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ABSTRACT 

We analyze how future costs must be balanced against present costs. This is traditionally done using an exponential function with a constant 
discount rate. The choice of discount rate can dramatically e_ect the question on what is the value of the future. This is specially critical for 
environmental problems such as global warming, and it has generated a controversy as to the urgency for immediate action (Stern, 2006; 
Nordhaus, 2007a,b). We briey review the issue for the nonspecialist and take into account the randomness of the economic evolution by 
studying the discount function of three widely used processes for the dynamics of interest rates: Ornstein-Uhlenbeck, Feller and log-normal.We 
also outline our previous empirical survey on 9 stable countries (countries that have not su_ered periods of destabilizing ination) over time 
spans ranging up to more than 300 years (Farmer et. al. 2014). We estimate the parameters of one of the models studied (the Ornstein-Uhlenbeck 
process) and obtain the long-run discount rate for all these countries. The long-run discount obtained supports the low discounting rate proposed 
by Stern (2006) over higher rates that have been advocated by others (Nordhaus, 2007a,b). 
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El valor del futuro distante: El proceso de descuento en entornos aleatorios 

RESUMEN 

Se analizan como deben comparase los costos futuros con los costos presentes. Generalmente este proceso se realiza mediante una función 
exponencial con una tasa constante de descuento. La elección de dicha tasa afecta de forma crítica cual es el valor del futuro. Ello es estratégico 
para los problemas medioambientales como el calentamiento global y ha generado una gran controversia sobre la urgencia en tomar las medidas 
adecuadas de forma inmediata (Stern, 2006; Nordhaus, 2007 a,b). Revisamos de forma breve el problema para el no especialista y tenemos en 
cuenta la aleatoriedad en la evolución económica mediante el estudio de tres modelos ampliamente usados para la evolución dinámica de los 
tipos de interés: Los procesos de Ornstein-Uhlenbeck, Feller y el log-normal. También resumimos un estudio empírico que hemos realizado 
sobre 9 países estables durante periodos de tiempo que pueden llegar a los 300 años (Farmer et. al. 2014). Usando el modelo de Ornstein-
Uhlenbeck estimamos de los datos empíricos los parámetros del modelo lo que nos permite obtener las tasa de descuento a largo plazo de estos 
países estables. Las tasas de descuento así obtenidas avalan la baja tasa de descuento propuesta por Stern (2006) en lugar de la más elevada 
propuesta por otros investigadores (Nordhauss, 2007 a,b)  

Palabras clave: Descuento. Medio ambiente. Tasas de interés. Inflación. Precio de mercado del riesgo. Proceso Ornstein-Uhlenbeck 
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1. INTRODUCCIÓN  

One important quantitative procedure in economics and finance is that of “discounting”. This process 
tries to answer a key question: How can we value the future? The discounting mechanism weights the 
future relative to the present and the weighting method is carried through a discount function which 
usually takes the form of a decreasing exponential (Samuelson, 1937). Indeed, under a steady rate of 
interest 𝑟, a dollar inverted today, at time 𝑡 = 0, will yield 𝑒  at time 𝑡 > 0. That is to say, a dollar in 
any future time 𝑡 is worth 𝑒  today. 

In this simple example 𝑟 is fixed but in practice rates are uncertain and it is not realistic to represent 
discounting by a deterministic function of time such as the decreasing exponential with a fixed rate and 
some kind of average over all possible interest rate paths must be taken. Before developing these ideas, 
let us remark that the problem of discounting shows its great importance not only in finance but in long-
run environmental planning (Dasgupta, 2004). Indeed, and assuming again a steady rate of interest, an 
environmental problem that costs 𝑋 to fix at time 𝑡 in the future is equivalent to an investment of 𝑒 𝑋 
today. Thus if 𝑟 is substantial, any benefit at some distant time would justify a negligible investment 
now. Therefore, high long-run interest rates favor nonintervention while lower rates advocate for more 
immediate measures. Letting interest rates to be a proxy for economic growth, a different version of the 
above argument is that technologies in the future will be so powerful that they will overshadow anything 
we can achieve with present day technology. In this sense it is more rational to follow policies fostering 
economic growth than try to combat global warning now. 

Remaining within long-run discounting, it is no surprise that the choice of a discount rate has vast 
consequences and is the object of intense debates and contradictory estimates (Arrow et al., 2013). For 
example, in a highly influential report on climate change commissioned by the UK government, Stern 
(2006) uses a discount rate of 1.4%, which on a 100-year horizon implies a present value of 25 % 
(meaning the future is worth 25% as much as the present). In contrast, Nordhaus (2007b) argues for a 
discount rate of 4%, which implies a present value of 2%, and at other times has advocated rates as high 
as 6% (Nordhaus, 2007a), which implies a present value of 0.3%. Stern has been widely criticized for 
using such a low rate (Nordhaus, 2007b, a; Dasgupta, 2006; Mendelsohn, 2006; Weitzman, 2007; 
Nordhaus, 2008). The choice of discount rate is probably the biggest factor influencing the debate on 
the urgency to respond to global warning and the issue is far from being settled. What is the right 
number? And is it even correct to use an exponential discount? 

For environmental problems normative approaches to choosing discount rates are based on ethical 
grounds and assumptions about economic growth (Stern, 2014a, b). They also depend on arguments 
involving the maximization of utility functions that are chosen for mathematical convenience (Heal and 
Milner, 2014). Economists present a variety of reasons for discounting, including impatience, economic 
growth and declining marginal utility; all of them embedded in the Ramsey formula (Ramsey, 1928), 
which forms the basis for standard approaches to discounting (Arrow et al., 2013). 

However, as mentioned above, rates are uncertain and it is not realistic to represent discounting by 
deterministic functions of time such as decreasing exponentials with a fixed rate and, therefore, some 
kind of average over all interest rate paths must be taken. This problem is particularly severe for 
environmental problems, where in questions such as global warming one must consider costs and 
benefits 100 or more years in the future. It also occurs in finance, where discounting times are typically 
thirty years or less, where it has long been recognized that interest rates must be modeled as random 
processes (Vasicek, 1977; Cox, Ingersoll, and Ross, 1985; Dothan, 1978; Brigo and Mercurio, 2006). 

A more positive approach to discounting consists in figuring out how the market trades off present 
consumption for future consumption. For the near future one can readily find the corresponding market 
interest rate for money, and by making assumptions about likely inflation one can infer the market 
discount rate for real consumption (see, for instance, Newell and Pizer 2003, or Farmer et al. 2014). For 
the distant future, a practical economist engaged in the environmental debate might try to use, as the 
forward discount rate, the average of historical interest rates which occurred in the last 200 hundred 
years (2.7 % in stable countries (Farmer et al., 2014)), or take the average of Wall Street forward looking 
models which price bonds of maturity as long as 30 years. However, we have shown (Farmer et al., 
2014) that, due to historical fluctuations of short real interest rates, the appropriate rate is considerably 
below these averages. 
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Moreover, the presence of fluctuations can dramatically alter the functional form of the discount 
function. If interest rates follow a geometric random walk, for example, Farmer and Geanakoplos (2009) 
(see also Geanakoplos et al., 2014) have shown that in some circumstances the discount function decays 
as a power law of the form 𝑡 / . They called this hyperbolic discount because the discount factor obeys 
the equation of a hyperbola instead of the usual exponential function. In the large time limit a hyperbolic 
function is much greater than any exponentially decaying function, showing that there is no positive 
long run rate of interest in this case. The hyperbola assigns an infinite value to any permanent positive 
flow of consumption, meaning that the infinite future is infinitely valuable. 

Nonetheless, anecdotal evidence suggests that long-term exponential behavior is the typical case. We 
have examined a variety of different processes, including more general log-normal processes, the Feller 
process, and the Ornstein-Uhlenbeck process (Farmer et al. 2015). We have found that the case of the 
simple log-normal process studied by Farmer and Geanakoplos (2009) was the only one that did not 
display long-term exponential behavior. All the other examples deviated from exponential behavior for 
short times, but, for a wide range of parameters, eventually converged to an exponential function. This 
suggests that, while the transient non-exponential behavior can be important for a few decades, the most 
important question is the long-term discount rate. 

Which model is most appropriate depends on the problem under study. Thus if we deal with 
environmental problems we should use real rates which are nominal interest rates corrected by inflation. 
In Sect. IV we present the main results of an empirical study that we have recently done on real rates of 
9 stable countries which have not suffered periods of destabilizing inflation. The survey covers 87 to 
318 years (see Farmer et al., 2014, and Sect. IV for details). Data clearly show that in many epochs and 
for all countries real rates frequently become negative, often by substantial amounts and for long periods 
of time. In environmental problems we are, therefore, lead to the Ornstein-Uhlenbeck process, since that 
model allows for negative values, while other processes, such as Feller or log-normal, exclusively deal 
with positive values. However, financial settings use nominal rates which usually are positive and, 
therefore, either the Feller or the log-normal processes are more appropriate (Brigo and Mercurio, 2006). 
In Sect. III we will present a summary on the key results of each model. 

Let us finally stress three important facts. Firstly, assuming that costs and benefits can be reduced to 
monetary values, the discounting problem is equivalent to bond pricing. A bond is an instrument that 
one can purchase now that delivers a payment in the future. Similarly, to combat climate change we 
must spend now in order to receive environmental and economic benefits in the future. If we can quantify 
both the expenditure required now and the likely cost of inaction in the future, then the price of the 
corresponding bond gives us an indication of the discount factor. We must say, nonetheless, that there 
are always intangible effects that are difficult to quantify in monetary terms, and one should be 
suspicious of any procedure that reduces the existence of a species or a human life to a dollar value. But 
it is nonetheless informative to see what a purely monetary analysis implies. 

Secondly, the interest rate for bonds as a function of their time to maturity is called the yield curve. 
Most bonds have a time to maturity of 30 years or less, but for environmental problems such as climate 
change we need to know the discount 100 years or more into the future. We do not have data on bonds 
of such long maturity. Thus we are faced with the problem of inferring the price of long maturity bonds 
from data on much shorter maturity bonds. Furthermore, the yield curve fluctuates substantially from 
year to year, so we need sufficient historical time series for reliable statistical inference. In order to do 
this we need a reasonable model for real interest rates at different maturities. 

Thirdly, in addition to the factors that determine the overall level of short term rates, there is one 
effect influencing long term rates that must be taken into account. This is the so-called “risk aversion”. 
All of this implies the modification of the probability distribution obtained from the empirical data as 
we will explain in later sections. The far future is less certain than the near future, so all else equal, we 
expect that longer term bonds bear greater risk, which should imply higher interest rates. 

In the rest of this paper we will develop and summarize all these ideas concerning discounting into 
a consistent framework which I will try to expose in a clear and intuitive way. 
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2. THE PROCESS OF DISCOUNTING IN CONTINUOUS TIME 

In economics the increment at a given time of the quantity of wealth, exemplified by some magnitude 
𝑀 = 𝑀(𝑡), is assumed to depend linearly on the quantity itself and the duration of the variation. For a 
continuous and instantaneous variation one the writes: 

𝑑𝑀(𝑡) ∝ 𝑀(𝑡)𝑑𝑡 (1) 

This is a phenomenological law base on the empirical fact that the bigger 𝑀(𝑡), the greater its 
variation at a given time, but also on the simplifying assumption that the increment is linear in 𝑀(𝑡) and 
not, for instance, quadratic. Let us incidentally note that linearity is equivalent to assuming that the 
interest rate, defined as the relative time derivative 

𝑟 =
1

𝑀(𝑡)

𝑑𝑀(𝑡)

𝑑𝑡
 

(2) 

is independent of 𝑀(𝑡). Note that this definition can be written as  

𝑟 =
𝑑 ln 𝑀

𝑑𝑡
 

(3) 

so that the rate is the derivative of the logarithm of wealth. 

In the simplest situation the growth law (1) represents a completely linear law with direct 
proportionality in which 𝑟 is constant: 

𝑑𝑀(𝑡) = 𝑟𝑀(𝑡)𝑑𝑡 (4) 

where 𝑟 is the rate and is measured in units of 1/(time). Now the growth law is readily integrated, giving 

𝑀(𝑡) = 𝑒 ( )𝑀(𝑡 ) (5) 

which yields an exponential growth connecting wealth at time 𝑡 with that of some earlier time 𝑡 < 𝑡. 

Before proceeding further, we recall that the growth law (1), often in the simplest version (4), appears 
in numerous branches of physical and social sciences. Thus, for example, in radioactivity if 𝑁(𝑡) is the 
number of active nuclei at time 𝑡, the usual hypothesis is that this number decrease as 

𝑑𝑁(𝑡) = −𝜆𝑁(𝑡)𝑑𝑡, 

where 𝜆 > 0 is the decay constant. Similar considerations apply to other situations, as they are for 
instance found in chemical reactions and population dynamics, as well as in many other situations. 

In economics, discounting refers to the process of connecting wealth at different times. Specifically 
the discount function, which we denote by 𝛿(𝑡), is defined by 

𝛿(𝑡) ≡
𝑀(𝑡 )

𝑀(𝑡)
 

(6) 

so that 𝑀(𝑡 ) = 𝛿(𝑡)𝑀(𝑡) in accordance with the fact that discounting specifically refers to weighting 
the future at some time 𝑡 relative to 𝑡 (𝑡 > 𝑡 ). 

In the simplest case of Eq. (5) the discount function is given by the decreasing exponential: 

𝛿(𝑡) = 𝑒 ( ) (7) 

where 𝑟 > 0 is the interest rate. However, as we have mentioned above, this simple form of discount, 
in which the interest rate is always constant, is unrealistic. A first generalization consists in assuming 
rates to be deterministic functions of time 𝑟(𝑡). In such a case the growth law (4) is generalized to  

𝑑𝑀(𝑡) = 𝑟(𝑡)𝑀(𝑡)𝑑𝑡 (8) 

which after integrating yields 

𝑀(𝑡) = 𝑀(𝑡 ) exp 𝑟(𝑡´)𝑑𝑡´  
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and discount is now given by  

𝛿(𝑡) = exp − 𝑟(𝑡´)𝑑𝑡´  
(9) 

Obviously if 𝑟(𝑡) = 𝑟 is constant we recover the simple exponential decay of Eq. (7). 

However, the assumption of rates being given by constants or by deterministic functions of time is 
unreasonable, at least over long periods of time. Financial interest rates are typically described as 
random, as the many models for stochastic interest rates appearing in the literature show (Brigo and 
Mercurio, 2006). Population dynamics are subject to random influences, as are chemical reactions and 
other physical processes where rates appear. 

We therefore assume that 𝑟(𝑡) is a random function of time. This naturally means that discounting 
𝛿(𝑡) is also random, as is clearly seen in Eq. (9). In these circumstances the effective discount function 
is defined as the average of 𝛿(𝑡): 

𝐷(𝑡) = 𝔼 exp − 𝑟(𝑡´)𝑑𝑡´  
(10) 

where the expectation 𝔼[. ] represents the average over all real trajectories of 𝑟(𝑡) up to time 𝑡 and 𝑡  is 
an arbitrary initial time.23 

Let us incidentally note that the problem of discounting -as expressed by Eqs. (9) and (10)- is 
formally identical to the problem of pricing bonds. Indeed, the price 𝐵(𝑡 |𝑡 + 𝑡 ) of a zero-coupon bond 
issued at time 𝑡  which unit payoff and maturing at time 𝑡 + 𝑡  (𝑡 ≥ 0) is (Brigo and Mercurio, 2006, 
see also Appendix B). 

𝐵(𝑡 |𝑡 + 𝑡 ) = exp − 𝑛(𝑡 , 𝑡´)𝑑𝑡´  
(11) 

where 𝑛(𝑡 , 𝑡) is the nominal rate. The differences between these two problens is that for discounting 
we are interested in real interest rates 𝑟(𝑡) -which can be negative due to inflation- whereas for bond 
pricing we are typically interested in the nominal rate 𝑛(𝑡 , 𝑡). 

The real interest rate 𝑟(𝑡) can, in principle, be any random process. However, the simplest and most 
common hypothesis consists in assuming that is that rates are described by a Markovian process with 
continuous sample paths. That is, we assume that 𝑟(𝑡) is a diffusion process whose time evolution is 
governed by a stochastic differential equation of the form. 

𝑑𝑟 = 𝑓(𝑟)𝑑𝑡 + 𝑔(𝑟)𝑑𝑊(𝑡) (12) 

where 𝑓(𝑟) is the drift, 𝑔(𝑟) > 0 is the noise intensity and 𝑊(𝑡) is the standard Wiener process. 

Looking at Eq. (10) we see that, in terms of the cumulative process 

𝑥(𝑡) 𝑟(𝑡´)𝑑𝑡´ 
(13) 

the discount function can be written as  

𝐷(𝑡) = 𝔼 𝑒 ( )  (14) 

which shows that, in terms of the probability density function (PDF) 𝑝(𝑥, 𝑟, 𝑡|𝑥 , 𝑟 , 𝑡 ) of the 
bidimensional diffusion process (𝑥(𝑡), 𝑟(𝑡)),24 the effective discount can be written as  

𝐷(𝑡) = 𝑑𝑟 𝑒 𝑝(𝑥, 𝑟, 𝑡|𝑥 , 𝑟 , 𝑡 )𝑑𝑥 
(15) 

                                                
23 Usually 𝑡 refers to the present time, which in our case and without los of generality (see below), can be taken equal to zero, 
i.e., 𝑡 = 0. 
24 The measure corresponding to the porbability density 𝑝 is sometimes referred to as the data generating measure. 
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From Eqs. (12)-(13) we see that (𝑥(𝑡), 𝑟(𝑡)) is defined by the following pair of stochastic differential 
equations 

𝑑𝑥 = 𝑟𝑑𝑡,  

𝑑𝑟 = 𝑓(𝑟)𝑑𝑡 + 𝑔(𝑟)𝑑𝑊(𝑡) (16) 

which implies that the joint PDF obeys the (forward) Fokker-Planck equation (Masoliver, 2018) 

𝜕𝑝

𝜕𝑡
= −𝑟

𝜕𝑝

𝜕𝑥
−

𝜕

𝜕𝑟
[𝑓(𝑟)𝑝] +

1

2

𝜕

𝜕𝑟
[𝑔 (𝑟)𝑝] 

(17) 

Since 𝑥(𝑡 ) = 0 and 𝑟(𝑡 ) = 𝑟 , the initial condition of this equation is 25 

𝑝(𝑥, 𝑟, 𝑡 |𝑟 , 𝑡 ) = 𝛿(𝑥)𝛿(𝑟 − 𝑟 ) (18) 

Let us incidentally note that since 𝑓(𝑟) and 𝑔(𝑟) do not depend explicitly on time, the process is 
time homogeneous, that is to say, invaritant under time translations (𝑡 → 𝑡 − 𝑡 ) and we can, therefore, 
set 𝑡 = 0 without loss of generality. 

There are two different approaches for obtaining the discount function 𝐷(𝑡). One of them, which is 
standard in the financial literature, is based on the backward Fokker-Planck equation and it is called the 
Feynman-Kac approach (Brigo and Mercurio, 2006; Masoliver, 2018). A second procedure is based on 
Fourier analysis (Farmer et al., 2015; Masoliver, 2018). Let us next succinctly present both approaches. 

Feynman-Kac approach 

The Feynman-Kac approach obtains a partial differential equation for the discount function 𝐷 =
𝐷(𝑡|𝑟 ) which is based is the backward Fokker-Planck equation. This equation is called the Feynman-
Kac equation and reads (see Appendix A for details) 

𝜕𝐷

𝜕𝑡
= −𝑟 𝐷 + 𝑓(𝑟 )

𝜕𝐷

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝐷

𝜕𝑟
 

(19) 

with the initial condition 

𝐷(0|𝑟 ) = 1 (20) 

Fourier transform approach 

We have recently presented an alternative method for obtaining the discount function which is based 
on the use of the characteristic function instead of the PDF and it turns out to be quite advantageous in 
linear cases (Farmer et al., 2014, 2015). Let us recall that the characteristic function is the Fourier 
transform of the joint density: 

�̅�(𝑤 , 𝑤 , 𝑡|𝑟 ) = 𝑒 𝑑𝑟 𝑒 𝑝(𝑥, 𝑟, 𝑡|𝑟 )𝑑𝑥 
(21) 

One of the chief advantages of working with the characteristic function is that obtaining the effective 
discount is straightforward. Indeed, comparison of Eq. (15), 

𝐷(𝑡|𝑟 ) = 𝑑𝑟 𝑒 𝑝(𝑥, 𝑟, 𝑡|𝑟 )𝑑𝑥 

with Eq. (21) shows that 

                                                
25 Recall that the Dirac delta function 𝜕(𝑧) is a generalized function with 𝜕(𝑧) = 0 for 𝑧 ≠ 0 and such that 

∫ 𝛿(𝑧)𝑑𝑧 = 1    and    ∫ 𝛿(𝑧)𝑓(𝑧)𝑑𝑧 = 𝑓(0), 

Over any sufficiently well behaved 𝑓(𝑧) vanishing as 𝑧 → ±∞ 
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𝐷(𝑡|𝑟 ) = �̅�(𝑤 = −𝑖, 𝑤 = 0, 𝑡|𝑟 ) (22) 

Therefore, in order to obtain the discount function we only need to know the joint characteristic 
function of the bidimensional process (𝑥, 𝑟). 

Adding risk aversion 

As we have mentioned at the end of Sect. I, the far future is less certain than the near future and we 
should expect that longer term discount bear greater risk, which would imply higher interest rates. In 
finance these risk factors are taken into account by considering the so-called “market price of risk” 
(Vasicek, 1977; Brigo and Mercurio, 2006). 

In the context of bond pricing, if investors are risk neutral then there is no market price of risk and 
prices can be modelled based on the data generating measure 𝑝 which is obtained by solving the Fokker-
Planck equation (17) with initial condition (18). The discount function 𝐷(𝑡) is then achieved through 
the Fourier transform �̅� or, alternatively, by solving the Feynman-Kac equation (19) with initial 
condition (20). This is sometimes called the Local Expectation Hypothesis (Cox, Ingersoll and Ross, 
1981; Gilles and Leroy, 1986). However, a more general assumption is that investors are sensitive to 
risk, in such a case bonds can no longer be priced in this way. Instead they are priced with an artificial 
probability density function, 𝑝∗, usually called risk-neutral measure. The two measures 𝑝 and 𝑝∗ are 
related by the market price of risk, which is the extra return per unit risk that investors demand to bear 
risk. This additional return is given by a quantity 𝑞 = 𝑞(𝑟, 𝑡) that in its most general form may depend 
on the rate 𝑟 and current time 𝑡. Although the most usual assumption is that 𝑞 = 𝑞(𝑟) only depends on 
the rate (Vasicek, 1977). Following a standard procedure for bond pricing (Vasicek, 1977; Piazzesi, 
2009, see also Appendix B for a short review) one takes risk into account with the drift replacement 
𝑓(𝑟) → 𝑓∗(𝑟), being 

𝑓∗(𝑟) = 𝑓(𝑟) + 𝑔(𝑟)𝑞(𝑟) (23) 

where 𝑞(𝑟) ≥ 0 is the market price of risk.26 In this case the risk neutral measure 𝑝∗(𝑥, 𝑟, 𝑡|𝑟 ) will be 
given by the Fokker-Planck equation (17) with 𝑓(𝑟) replaced by 𝑓∗(𝑟), that is, 

𝜕𝑝∗

𝜕𝑡
= −𝑟

𝜕𝑝∗

𝜕𝑥
−

𝜕

𝜕𝑟
[𝑓(𝑟) + 𝑔(𝑟)𝑞(𝑒)]𝑝∗ +

1

2

𝜕

𝜕𝑟
[𝑔 (𝑟)𝑝∗] 

(24) 

with initial condition given by Eq. (18). In an analogous way, the discount function, adjusted for risk, 
will now be given by de Feynman-Kac equation (19) with 𝑓(𝑟) replaced by 𝑓∗(𝑟). Using the Fourier 
method the discount function will be given in terms of the risk-neutral characteristic function, 
�̅�∗(𝑤 , 𝑤 , 𝑡|𝑟 ), by [cf. Eq. (22)] 

𝐷(𝑡|𝑟 ) = �̅�∗(𝑤 = −𝑖, 𝑤 = 0, 𝑡|𝑟 ) (25) 

3. SOME MODELS 

Financial economists have developed a large number of models of interest rate processes to enable 
them to price bonds and other cash flows. In these models interest rates are described by positive random 
processes since financial interest rates never (or very rarely) go negative. Although the models could in 
principle be extended to arbitrary horizons, they have only been studied carefully over time horizons of 
up to 30 years, since bonds are hardly ever issued for periods longer than this. 

On the other hand, environmental economists are interested in the real behavior of the economic 
growth over much larger horizons, in contrast to financial economists, who are typically more interested 
in nominal rates over shorter horizons. The large-horizon behavior of growth is essentially different to 
that of the short-horizon behavior and this is due to the fact that real rates can take on negative values. 
Indeed, taking nominal rates corrected by inflation as a proxy of economic growth, we have recently 

                                                
26 The form of 𝑞(𝑟) is, in principle, unknown and has to be conjectured. The usual and simplest assumption is that 𝑞(𝑟) = 𝑞 
is constant. In such a case the value of 𝑞 is estimated from empirical data. 
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shown (Farmer et al., 2014) thorough an empirical study on many countries that real interest rates are 
negative around 25% of the time (see Sect. (IV). 

To understand how discounting depends on the random process used to characterize interest rates we 
have studied three different models and obtained exact analytical expressions for the discount function 
(Farmer et al., 2015). The three models describe to varying degree a number of relevant characteristics 
observed in rates, while being simple enough to allow for complete analytical treatment. 

The first model is based on the Ornstein-Uhlenbeck process (called Vasicek model in financial 
literature) which allows for negative rates and is therefore suitable for pricing environmental problems. 
The model has a stationary probability distribution and exhibits reversion to the mean, which means that 
the process tends to recur to its average stationary value. The second and third models considered are 
given by the Feller and log-normal processes respectively. For these processes rates cannot be negative. 
The Feller process --also known as Cox Ingersoll and Ross (CIR) model- has reversion to the mean and 
a stationary probability distribution and it is one of the most popular models in finance. On the other 
hand, the log-normal process (Dotham model) does not have reversion to the mean and does not have a 
stationary distribution. Despite these shortcomings the Dotham model has also been used in the financial 
literature mainly because rates are positive and allows for analytical treatment (Brigo and Mercurio, 
2006). Let us next briefly review these models and summarize their main traits. 

3.1. The Vasicek model 

In this model rates are described by the Ornstein-Uhlenbeck process (Vasicek, 1977), which is 
characterized by linear drift and constant noise intensity: 

𝑑𝑟(𝑡) = −𝛼[𝑟(𝑡) − 𝑚] + 𝑘𝑑𝑊(𝑡) (26) 

where 𝑟(𝑡) is the rate and 𝑊(𝑡) the Wiener process. The parameter 𝑚, sometimes refereed to as “normal 
level,” is a mean value to which rates revert, 𝑘 > 0 is the amplitude of fluctuations, and 𝛼 > 0 is the 
strength of the reversion to the mean. As we will see in the next section these parameters can be 
estimated from empirical data. 

The model is Gaussian and has a stationary probability distribution (as 𝑡 → ∞) given by (Gardiner, 
1986; Masoliver, 2018) 

𝑃 (𝑟) =
𝛼

𝜋𝑘
𝑒 ( ) /  

which proves that the normal level 𝑚 is the stationary mean value 

𝑚 = 𝔼[𝑟(𝑡)] (27) 

It can also be shown that the correlation function of the process, defined as the average 

𝐶(𝜏) = 𝔼[𝑟(𝑡 + 𝜏)𝑟(𝑡)] − (𝔼[𝑟(𝑡)])  

in the stationary state reads (Masoliver, 2018) 

𝐶(𝜏) =
𝑘

2𝛼
𝑒  

(28) 

which means that 𝛼  is the correlation time of the rate. Let us observe that the volatility, 𝜎 = 𝐶(0), 
is independent of the normal level and given by 

𝜎 = 𝑘 /2𝛼 (29) 

For this model it is possible to obtain an exact expression for the discount function 𝐷(𝑡) that reads 
(Farmer et al., (2015), see also Masoliver (2018)) 

𝑙𝑛𝐷(𝑡) = −
𝑟

𝛼
(1 − 𝑒 ) +

𝑘

2𝛼
𝑎𝑡 − 2(1 − 𝑒 ) +

1

2
(1 − 𝑒 ) − 𝑚[𝑡

−
1

𝛼
(1 − 𝑒 )] 

(30) 
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where  𝑟 = 𝑟(0) is the initial rate. Note that the exponential terms in Eq. (30) are only significant at 
small times, that is to say, for times smaller than the correlation time of the rate (𝑡 < 𝛼 ) but they are 
negligible at longer times. Neglecting also constant terms we thus have 

𝐷(𝑡) ≃ 𝑒  (31) 

where 

𝑟 = 𝑚 −
𝑘

2𝛼
 

(32) 

is the long-run discount rate. Let us note an important fact that the long-run discount rate is smaller than 
the mean value of the return given by the normal level 𝑚. This reduction is quantified by the ratio 𝑘/𝛼, 
which means, for instance, that long persistence (recall that this is equivalent to long correlation time, 
i.e., 𝛼 small) or else increasing noise fluctuations (i.e., 𝑘 large) decrease the long-run discount rate as 
compared with the average rate. 

3.1.1. Risk aversion  

As mentioned above risk aversion is taken into account by introducing the market price of risk 𝑞(𝑟) 
and changing drift according to Eq. (23). For the Vasicek model, in which 𝑓(𝑟) = −𝛼(𝑟 − 𝑚) and 
𝑔(𝑟) = 𝑘, we have 

𝑓∗(𝑟) = −𝛼(𝑟 − 𝑚) + 𝑘𝑞(𝑟) (33) 

and taking 𝑞 constant, we write 

𝑓∗(𝑟) = −𝛼(𝑟 − 𝑚∗) (34) 

where 

𝑚∗ = 𝑚 +
𝑞𝑘

𝛼
 

(35) 

Since the modified drift 𝑓∗(𝑟) has the same form that 𝑓(𝑟) we conclude that the adjusted-for-risk 
discount function will be given by Eq. (30) after the replacement 𝑚 → 𝑚∗. In particular, the adjusted 
long-run discount 𝑟∗ now reads [cf. Eq. (32)] 

𝑟∗ = 𝑚 +
𝑞𝑘

𝛼
−

𝑘

2𝛼
 

(36) 

Thus we see that the long-run discount depends on the historical rate 𝑚 but shifted by two terms. 
The first term raise the long-run rate due to the market price of risk. The second shift lowers it by an 
amount given by the ratio of uncertainty (as measured by 𝑘) and persistence (as measured by 𝛼). We 
can trivially rewrite the equation above as 

𝑟∗ = 𝑚 +
𝑘

𝛼
(𝑞 −

𝑘

2𝛼
) 

(37) 

This expression clearly shows that the overall shift in the long-run discount rate will be positive or 
negative depending on the size of the market price of risk 𝑞 in relation to the ratio 𝑘/2𝛼 of the noise 
intensity 𝑘 and the reversion rate 1/𝛼. 

It is not surprising that the market price of risk raises the long term rate, but it is not so obvious that 
uncertainty and persistence (through the combination 𝑘/2𝛼) can lower 𝑟 . Indeed, for the Ornstein-
Uhlenbeck process uncertainty and persistence can make the long term rate arbitrarily small. Certainly 
for any given mean interest rate 𝑚, by varying 𝑘 and 𝛼, the long-run discount rate 𝑟  can take on any 
value less than 𝑚, including negative values, while at the same time the standard deviation 𝜎 can also 
be made to take on any arbitrary positive value. 

It is even possible for the long-run rate to be negative. This is due to the amplification of negative 
real interest rates 𝑟(𝑡). Computation of the discount function involves an average over exponentials, 
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rather than the exponential of an average. As a result, periods where interest rates are negative are 
amplified, and can easily dominate periods where interest rates are large and positive, even if the 
negative rates are rarer and weaker. It does not take many such periods to substantially reduce the long 
run interest rate. 

To summarize in the Vasicek model, and even taking into account risk aversion, the long-run 
discounting rate can be much lower than the mean, and can correspond to low interest rates that are 
rarely observed. 

3.2.  CIR model 

In this model rates are described by the Feller process (Cox, Ingersoll, Ross, 1985). The process is a 
diffusion process with linear drift and linear diffusion coefficient (Feller, 1951), 

𝑑𝑟(𝑡) = −𝛼[𝑟(𝑡) − 𝑚]𝑑𝑡 + 𝑘 𝑟(𝑡)𝑑𝑊(𝑡) (38) 

where, as in the Ornstein-Uhlenbeck process, 𝑚 > 0 represents the mean stationary rate and 𝛼  is the 
correlation time. It can be shown that the Feller process never attains negative values (Feller, 1951; 
Masoliver and Perelló, 2012; Masoliver, 2018) and it is, therefore, suitable for modeling financial 
nominal rates rather than real rates. The process is not Gaussian and stationary density is given by the 
Gamma distribution (Masolover, 2018) 

𝑝 (𝑟) =

2𝛼
𝑘
Γ(𝜃)

𝑟 𝑒  

where 

𝜃 =
2𝛼𝑚

𝑘
 

(39) 

is a positive constant that combines all the parameters of the model into a single dimensionless 
expression. As in the Vasicek model 𝑚 is the stationary mean value at which the process reverts. 

The stationary correlation function is also given by an exponential decreasing in time (Masoliver, 
(2018) 

𝐶(𝜏) =
𝑚𝑘

2𝛼
𝑒  

Note that 𝛼  is again the correlation time but, contrary to the Vasicek model, the volatility 𝜎 =
𝑚𝑘 /2𝛼 depends on the normal level 𝑚 as well. 

For the CIR model it is also possible to obtain the exact expression for the discount function. The 
result reads (Brigo and Mercurio, 2006; Farmer et al., 2015) 

𝐷(𝑡) =
2𝜆𝑒 ( ) /  

(𝜆 + 𝛼) + (𝜆 − 𝛼)𝑒
exp −

2 1 − 𝑒 𝑟

(𝜆 + 𝛼) + (𝜆 − 𝛼)𝑒
 

(40) 

where 𝑟  is the initial rate, 𝜃 is defined in Eq. (39), and  

𝜆 = 𝛼 + 2𝑘  (41) 

Notice that 𝜆 > 𝛼 and the time scale represented by 𝜆  is smaller than the correlation time 𝛼 . As 
time increases (in fact, when 𝜆 ≫ 1) the effective discount (40) reduces to  

𝐷(𝑡) ≃ 𝑒  (42) 

(𝑡 → ∞), where 

𝑟 =
1

2
(𝜆 − 𝛼)𝜃 

(43) 
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is the long-run discount rate of the CIR model. Substituting for Eqs. (39) and (41) this can be written as  

𝑟 =
2𝑚

1 + 1 + 2𝑘 /𝛼
 

(44) 

which clearly shows that  

𝑟 < 𝑚 

Therefore, like the Vasicek model, the CIR long-run discount rate is smaller than the stationary 
average rate by an amount that also depends on the square of the ratio 𝑘/𝛼. Notice that, again, either a 
long persistence (𝛼 small) or an increase of the noise intensity (𝑘 large) diminish the long-run discount 
rate. 

3.2.1. Risk aversion  

For the Feller process [ef. Eq. (38)] 𝑓(𝑟) = −𝛼(𝑟 − 𝑚) and 𝑔(𝑟) = 𝑘√𝑟 and the adjusted drift is  

𝑓∗(𝑟) =  −𝛼(𝑟 − 𝑚) + 𝑘𝑞(𝑟)√𝑟 (45) 

For any function 𝑞(𝑟) (including a constant market price of risk) this leads to an unsolvable Fokker-
Planck equation with no analytical expression for the adjusted discount and the long-run discount rate. 
It is, nonetheless, possible to get analytical expressions for these quantities if the market price of risk 
has the functional form 

𝑞(𝑟) = 𝑞√𝑟 (46) 

where 𝑞 ≥ 0 is a positive quantity. In such a case we may write 

𝑓∗(𝑟) = −𝛼∗(𝑟 − 𝑚∗) (47) 

where 

𝛼∗ = 𝛼 − 𝑘𝑞,        𝑚∗ =
𝛼𝑚

𝛼 − 𝑘𝑞
 (48) 

The adjusted drift has the same form than 𝑓(𝑟). Therefore, the adjusted discount function will be 
given Eq. (40) with the replacements 𝛼 → 𝛼∗ and 𝑚 → 𝑚∗ and the long-run discount is [cf. Eq. (44)] 

𝑟∗ =
2𝑚∗

1 + 1 + 2𝑘 /𝛼∗
 

(49) 

From the definitions of 𝛼∗ and 𝑚∗ we easily see that 𝛼∗ ≤ 𝛼 and 𝛼∗𝑚∗ = 𝑎𝑚. Hence, writing 𝑟∗  as  

𝑟∗ =
2𝛼∗𝑚∗

𝛼∗ + √𝛼∗ + 2𝑘
 

we see at once that 𝑟∗ ≥ 𝑟 . We therefore conclude that if the market price of risk has the special 
functional for given by Eq. (46), in the CIR model risk always increases the long-run discount rate 
regardless noise intensity and persistence. 

3.3.  The log normal model 

In this mode rates are described by the geometric Brownian notion (log-normal process). It can be 
written as  

𝑑𝑟

𝑟
= 𝛼𝑑𝑡 + 𝑘𝑑𝑊(𝑡) 

(50) 

where 𝑟 is the interest rate, 𝛼 and 𝑘 are constant parameters, 𝛼 maybe positive or negative whereas 𝑘 is 
always positive and 𝑊(𝑡) is the Wiener process. Equation (50) can be integrated at once yielding  
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𝑟(𝑡) = 𝑟 exp 𝛼 −
𝑘

2
𝑡 + 𝑘𝑊(𝑡)  

(51) 

showing that 𝑟(𝑡) is never negative (𝑟 > 0). Therefore, the log-normal is more suited for modelling 
nominal interest rates in finance, which are never negative, than for modelling real rates in 
environmental economics. Contrary to OU and Feller processes, the log-normal process does not show 
reversion to the mean. Indeed, as 𝑡 increases we see from Eq. (51) that the rate either diverges when 
𝛼 > 0 or goes to zero if 𝛼 < 0. In an equivalent way one can also show from Eq. (51) that the mean and 
variance of the process are 

〈𝑟(𝑡)〉 = 𝑟 𝑒 ,      𝑉𝑎𝑟[𝑟(𝑡)] = 𝑟 𝑒 𝑒 − 1  

The discount associated with the log-normal process model was studied by Dothan (1978) and in 
finance is sometimes known as the Dothan model. It is one of the models used in the literature (Brigo 
and Mercurio, 2006) mostly because allows for analytical treatment. In Farmer et al. (2015) we have 
obtained the discounting function and discussed some of its interesting asymptotic properties. We will 
here briefly summarize the main results and refer the interested reader to our previous work for more 
details. 

Contrary to Vasicek and CIR models, where it is possible to obtain exact expressions for the discount 
function 𝐷(𝑡), in the log-normal case we can only obtain the exact expression for the Laplace transform, 

𝐷(𝑠) = 𝑒 𝐷(𝑡)𝑑𝑡 

of the discount. The resulting formula -written as an integral of the Kummer function- is rather intricate 
and we won’t write it here (see Farmer at al., 2015, for more information). From that expression we can, 
nonetheless, get asymptotic expressions as 𝑡 → ∞ for discount in real time using the so-called Tauberian 
theorems which relate the small 𝑠 behaviour of 𝐷(𝑠) with the long-time behaviour of 𝐷(𝑡) (Pitt, 1958). 
The final result are the following asymptotic expressions of the discount function 𝐷(𝑡) as 𝑡 → ∞ which 
for long-run discount is all that matters (Farmer et al., 2015): 

𝐷(𝑡)~

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     𝛼 < 𝑘 /2

𝑒             𝛼 > 𝑘 /2

𝑡 /               𝛼 = 𝑘 /2

 

(52) 

The asymptotic form of the discount function thus depends on the values taken by the ratio 𝛼/𝑘  
between the strength of the deterministic drift 𝛼 and the amplitude of fluctuations given by 𝑘 /2. 

i) The case 𝛼 < 𝑘 /2 corresponds to strong fluctuations, where the noise intensity 𝑘 /2 is greater 
than the drift parameter 𝛼. In this case the discount asymptotically approximates to a constant value (see 
Farmer et al., 2015, for the actual value of this constant). 

ii) The case 𝛼 > 𝑘 /2 corresponds to mild fluctuations for which deterministic drift is stronger than 
noise. In such a case the discount function has the expected exponential decay (Farmer et al., 2015) 

𝐷(𝑡)~𝑒  (53) 

with a long-run rate of discount given by 

𝑟 =
1

𝛿
𝛼 −

𝑘

2
 

(54) 

where 0 < 𝛿 < 1 is a positive numerical factor which only depends on the ratio            2𝛼/𝑘  and reads  

𝛿 = 𝜓
2𝛼

𝑘
+

1

2𝛼
𝑘

− 1
 

(55) 

where 𝜓(. ) is the digamma function. 
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Let us write Eq. (53) in a more suggestive form. Indeed, from Eq. (51) we see that  

𝔼 𝑙𝑛
𝑟(𝑡)

𝑟
= 𝛼 −

𝑘

2
𝑡 

and with the help of Eq. (54) we write Eq. (53) as 

𝐷(𝑡)~ exp −
1

𝛿
𝔼 𝑙𝑛

𝑟(𝑡)

𝑟
 

(56) 

(𝑡 → ∞ and 𝑘 /2 < 𝛼). Note that the average 𝔼[ln 𝑟(𝑡)/𝑟 ] is what a practitioner would take as an 
estimate of the discount rate up to time 𝑡 within the log-normal model. Since 0 < 𝛿 < 1, the analytical 
result (56) shows that the actual long-run rate of the model is a fraction of the average rate. We have 
shown elsewhere that the long-run discount rate is at most 73% of the average rate (Farmer et al., 2015). 

In this way when > 1 the log-normal model follows a similar pattern to that of the OU and Feller 

models: In all of them the long-run rate is smaller than the average rate. This general statement is in fact 
a direct consequence of Jenesen’s inequality, which states that the average of a convex function is greater 
than or equal to the function of the average; that is, 𝔼[𝑓(𝑋)] ≥ 𝑓(𝔼[𝑋]). Assuming 𝑓 to be the 
decreasing exponential and 𝑋 the cumulative process 𝑥(𝑡) defined in Eq. (13), it follows immediately 
that the long-run rate 𝑟  must be always less than or equal to the average rate. Nonetheless, our 
procedure quantifies the difference among averages (Farmer et al., 2015). 

iii) The critical case 𝛼 = 𝑘 /2, in which deterministic motion and fluctuations are balance, leads to 
the hyperbolic discount function as obtained by Farmer and Geanakoplos (2009). The hyperbolic 𝐷(𝑡) 
is substantially greater than any exponential decaying function, showing that there is no long-run rate of 
interest in this case. In fact the long-run rate of interest is 0, but that does not convey as precise 
information as saying 𝐷(𝑡) is approximately 𝑘/√𝑡 for all large 𝑡. Since the sum (i.e., the integral) of all 
these 𝐷(𝑡) is infinite, such 𝐷(𝑡) assigns infinite value to any permanent positive flow of consumption. 
In other words, the infinite future is infinitely valuable. 

3.3.1. Risk aversion  

Let us very briefly comment on the inclusion of risk aversion in the Dothan model. For the log-
normal process 𝑓(𝑟) = 𝛼𝑟 and 𝑔(𝑟) = 𝑘𝑟 and 

𝑓∗(𝑟) = [𝛼 + 𝑘𝑞(𝑟)]𝑟 

Assuming a constant market price of risk, 𝑞(𝑟) = 𝑞 ≥ 0, we have 

𝑓∗(𝑟) = 𝛼∗𝑟,        𝛼∗ = 𝛼 + 𝑞 

Again 𝑓∗(𝑟) has the same form than 𝑓(𝑟) and all previous results will apply with the replacement 
𝛼 → 𝛼∗. 

4. EMPIRICAL STUDY 

To understand how discounting depends on the random process used to characterize interest rates, 
we have collected data for nominal interest rates and inflation for nine countries over spans of time 
ranging from 87 to 318 years. The countries in our sample are: Argentina (ARG, 1864-1960), Australia 
(AUS, 1861-2012), Canada (CAN, 1913-2012), Denmark (DNK, 1821-2012), United Kingdom (GBR, 
1694-2012), Netherlands (NLD, 1813-2012), Sweden (SWE, 1868-2012), the United States (USA, 
1820-2012), and South Africa (ZAF, 1920-2012) (see Table 1). Since all but two of our nominal interest 
rate processes are for ten year government bonds, which pay out over a ten year period, we smooth 
inflation rates with a ten year moving average, and subtract the annualized inflation index from the 
annualized nominal rate to compute the real interest rate. 
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Table 1 
List of the data analyzed. 

 Country Consumer Price Index Bond Yields from to records 

1 Canada CPCANM 

quarterly 

IGCAN10 

quarterly 

12/31/1913 09/30/2012 357 
     
2 Argentina CPARGM 

annual from 12/31/1864 

quarterly from 12/31/1932 

IGARGM 

quarterly 

12/31/1864 03/31/1960 342 
     
     
3 Nerherlands CPNLDM 

annual 

IGNLD10D 

annua 

12/31/1813 12/31/2012 189 
     
4 Australia CPAUSM 

annual from 12/31/1861 

quarterly 12/31/1991 

IGAUS10 

quarterly 

12/31/1961 09/30/2012 564 
     
     
5 Denmark CPDNKM 

annual from 12/31/1821 

quarterly from 12/31/1914 

IGDNK10 

quarterly 

12/31/1821 09/30/2012 725 
     
     
6 South Africa CPZAFM 

quarterly 

IGZAF10 

quarterly 

12/31/1920 09/30/2012 329 
     
7 Sweden CPSWEM 

annual 

IGSWE10 

annual 

12/31/1868 12/31/2012 135 
     
8 United Kingdom CPGBRM 

annual 

IDGBRD 

annual 

12/31/1694 12/31/2012 309 
     
9 United States CPUSAM 

annual 

TRUSG10M 

annual 

12/31/1820 10/30/2012 183 
     

 

Recall that real rate are nominal rates corrected by inflation, therefore, in order to estimate real rates 
we must estimate nominal rates as well as inflation rate. For one hand, nominal rate 𝑛(𝑡) are determined 
by IG rates constructed from de 10 year Government Bond Yield 𝑦(𝑡|𝜏) with 𝜏 = 10 years. The latter 
is defined as follows. Let us denote by 𝐵(𝑡|𝑡 + 𝜏) the price at time 𝑡 of a government bond maturing at 
time 𝑡 + 𝜏 with unit maturity, 𝐵(𝑡|𝑡) = 1, then the yield 𝑦(𝑡|𝜏) is defined as  

𝑦(𝑡|𝜏) = − ln 𝐵(𝑡|𝑡 + 𝜏)/𝜏 

so that 

𝐵(𝑡|𝑡 + 𝜏) = 𝑒 (𝑡|𝜏) 

Nominal rates are then estimated by 

𝑛(𝑡)~𝑦(𝑡|𝜏),    (𝜏 = 10 𝑦𝑒𝑎𝑟𝑠) 

On the other hand, the inflation rate is estimated through the Consumer Price Index (CPI) as 

𝑖(𝑡)~
1

𝜏
ln [𝐼(𝑡 + 𝜏)/𝐼(𝑡)] 

where 𝐼(𝑡) is the aggregated inflation up to time 𝑡, and 𝜏 = 10 years and whose relation with the 
Consumer Price Index (CPI) is 

𝐼(𝑡 + 𝜏) = 𝐼(𝑡) [1 + 𝐶(𝑡 + 𝑗)] 
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Table 2  
Parameter estimation of the Vasicek model (using real rates) in yearly units. 

Country Neg RI m Min Max k Min Max 𝜶 𝒓  

Canada 22% (20y) 2.9 0.1 6 2.3 1.1 2.0 0.26 2.5 

Argentina 20% (17y) 2.4 -2.9 6.8 6.2 2.8 6.7 0.39 1.1 

Netherlands 17% (33y) 3.2 0.8 5.4 1.6 0.8 2.2 0.14 2.4 

Australia 23% (33y) 2.6 -0.7 4.9 2.3 0.7 2.8 0.19 1.9 

Denmark 18% (33y) 3.2 1.5 4.3 2.3 1.1 2.9 0.23 2.7 

South Africa 43% (36y) 1.8 -2.2 5.5 2.5 1.2 2.0 0.21 1.1. 

Sweden 28% (38y) 2.3 -0.3 3.9 2.5 0.6 3.4 0.25 1.9 

United Kingdom 14% (45y) 3.3 1.4 4.3 1.9 1.0 2.4 0.19 2.8 

United States 31% (36y) 2.6 1.0 4.0 1.8 1.2 2.1 0.18 2.1 

Stable countries 23% (33y) 2.7 -0.14 5.0 2.6 1.04 2.94 0.23 2.1 

Notes (i) “Neg RI” gives the percentage of time and the total number of years in which real interest rates are negative. (ii) The 
columns 𝑚, 𝑘 (in %) and 𝛼 are estimates taking each country time series; 𝑟  (in %) is evaluated from Eq. (32). (iii) The Min and 
Max columns illustrate the robustness of the estimation procedure by providing the minimum and the maximum value of parameter 
estimation on four equal length data blocks. (iv) 𝛼 is estimated by fitting the empirical correlation function to an exponential (cf. 
Eq. (28)) after using the whole data block. 

 
where 𝐶(𝑡) is the time series of the empirical CPI. The instantaneous rate of inflation 𝑖(𝑡) is, therefore, 
estimated by the quantity 𝑖(𝑡 + 𝜏) (𝜏 = 10 years) which written in terms of the CPI reads 

𝑖(𝑡)~𝑖(𝑡 + 𝜏) =
1

𝜏
ln [1 + 𝐶(𝑡 + 𝑗)] 

Finally, real interest rate 𝑟(𝑡) are defined via Fisher’s procedure, subtracting realized inflation from 
nominal interest rates: 

𝑟(𝑡) = 𝑛(𝑡) − 𝑖(𝑡) 

Having established how to estimate real rates from data, let us now proceed to present our empirical 
estimates of the long discount rate for the 9 countries shown in Table 2. Let us first notice that a striking 
feature observed in many epochs for all countries is that real interest rates frequently become negative, 
often by substantial amounts and for long periods of time (see Table 2). On average, real interest rates 
are negative one quarter of the time. This makes the CIR and Dothan models less interesting for 
modelling real interest rates, as well as many other models which assume that interest rates are positive 
(Brigo and Mercurio, 2006). We, therefore, confine the empirical work to the Vasicek model. We also 
assume the “Local Expectation Hypothesis” according to which we live in a risk neutral world and the 
market price of risk is zero. This is obviously a first approximation, specially for long-run discounting.27 

We estimate the parameters 𝑚, 𝛼 and 𝑘 of the Vasicek model to each of the data series. The parameter 
𝑚 is easily estimated because it is the stationary mean value of the rate [cf. Eq. (27)] 

𝑚 = 𝔼[𝑟(𝑡)] 

The estimation of parameters 𝛼 and 𝑘 is based on the correlation function of the Ornstein-Uhlenbeck 
process. Thus from Eq. (28) we have 

𝐶(𝑡 − 𝑡´) =
𝑘

2𝛼
𝑒 | ´| 

Evaluating then the empirical correlation from data and fitting it by an exponential we estimate α 
(measured in year units) for each country. The third and last parameter, 𝑘, is obtained from the empirical 
standard deviation 𝜎 = 𝔼[|𝑟(𝑡) − 𝑚| ], which for the Vasicek model is given by Eq. (29). That is, 

                                                
27 Adding risk, after assuming a constant market price of risk, is under current investigation (Farmer et. al. 2019) 
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𝑘 = 𝜎√2𝛼 

The resulting parameters for all countries are listed in Table 2 along with its maximum and minimum 
value for each country. 

Once the parameters of the Vasicek model have been estimated, the long-run discount rate is readily 
evaluated from Eq. (32), 

𝑟 = 𝑚 − 𝑘 /2𝛼  

We finish this section by recalling that we have termed the nine countries analyzed as “stable 
countries” because they have not suffered periods of destabilizing inflation (as, for instance, Germany 
and Japan among others) and consequently show stable and frequently positive real interest rates which 
in turn results in positive long-run rates.28 

5. CONCLUDING REMARKS 

Financial economists have developed a large number of models of interest rate processes to enable 
them to price bonds and other cash flows. In these models interest rates are described by positive random 
processes since financial interest rates never (or very rarely) go negative. Although the models could in 
principle be extended to arbitrary horizons, they have only been studied carefully over time horizons of 
up to 30 years, since bonds are seldom issued for periods longer than this. 

On the other hand, environmental economists are interested in the real behavior of the economic 
growth over much larger horizons, in contrast to financial economists, who are typically more interested 
in nominal rates over shorter horizons. Their behavior is essentially different due to the fact that real 
rates can take on negative values. Taking nominal rates corrected by inflation as a proxy of economic 
growth, we have seen from an empirical survey on 9 relatively stable countries that real interest rates 
are negative around 23 % of the time. 

To understand how discounting depends on the random process used to characterize interest rates we 
have studied three different models and obtained exact analytical expressions for the discount function. 
These three models describe to varying degrees a number of relevant characteristics observed in rates, 
while being simple enough to allow for complete analytical treatment. 

In the first model rates are represented by the Ornstein-Uhlenbeck process (Vasicek model) which 
allows for negative rates and is therefore suitable for pricing environmental problems. The model has a 
stationary probability distribution and exhibits reversion to the mean indicating that the process tends to 
recur to its average stationary value. 

In the second and third models considered rates are represented by the Feller and log-normal 
processes respectively. For these processes rates cannot be negative. The Feller process (CIR model) 
has reversion to the mean and a stationary probability distribution constituting one of the most popular 
models in finance. On the other hand, the log-normal process (Dotham model) has no reversion to the 
mean nor stationary distribution. 

We have carried out an empirical study of real rates and bearing in mind that real interest rates may 
be negative we have in consequence used the Vasicek model. When we estimate the parameters of the 
Vasicek model –that is 𝑚, 𝛼 and 𝑘, assuming no risk aversion– of the nine countries which never faced 
destabilizing inflation, we find an average historical rate 𝑚 =  2.7 % whereas, due to fluctuations, the 
long-run discounting has an average of 𝑟 =  2.1 %, which is around 22 % smaller than the historical 
average represented by 𝑚. Let us incidentally note that our value of 2.1 % is closer to Stern’s estimate 
(1.4 %) than that of Nordhhaus (4 %). 

It is also worth mentioning the case of the United Kingdom where the historical rate over more than 
300 years is 3.3 % while the long-run discount rate is 𝑟 =  2.8 % (see Table 2). This long-run discount 
is very close to the one recently obtained by Giglio, Maggiori and Stroebel (2015) who, using data on 

                                                
28 A more complete study including non stable countries in which the long-run discount rate is negative togetherwith other 
characteristics is under present investigation and some results will soon appear (Perelló et. al. 2019). 
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housing markets in the United Kingdom during 2004–2013 and Singapore during 1995–2013, have 
estimated an annual discount rate of 2.6 % for payments more than 100 years in the future. 

Let us finally recall that present analysis has been performed assuming the “Local Expectation 
Hypothesis” according to which the data generating measure is equal to the risk-neutral measure 
implying that the market price of risk 𝑞 is taken to be zero. In part this is due to the fact that estimating 
𝑞 from data is rather unreliable because one would need to know the instantaneous rate of return (see 
Appendix B) which we can only approximate from data using the shortest rate available which is the 
three-month treasury bills. Unfortunately historical data on this shorter bonds is unavailable for most 
countries. We are, nonetheless, working on this aspect for UK and USA, the only countries for which 
we have data on three-month treasury bills (Farmer et al., 2019). 

We finish with the following reflection aimed at environmental concerns and with which we had 
finished one of our papers on the problem (Farmer et al., 2014): “Real interest rates are typically closely 
related to economic growth, and economic downturns are a reality. The great depression lasted for 15 
years, and the fall of Rome triggered a depression in Western Europe that lasted almost a thousand years. 
In light of our results here, arguments that we should wait to act on global warming because future 
economic growth will easily solve the problem should be viewed with some skepticism. When we plan 
for the future we should always bear in mind that sustained economic downturns may visit us again, as 
they have in the past”. 

Appendix A. The Feynman-Kac equation 

In this appendix we show how obtaining the Feynman-Kac equation (19) for the effective discount 
function 𝐷(𝑡|𝑟 ). The procedure, known as Feynman-Kac approach, is based on the Fokker-Planck 
equation for the PDF 𝑝(𝑥, 𝑡, 𝑡|𝑥 , 𝑟 , 𝑡 ) but in its backward version (see below). In what follows we 
will assume that 𝑡 ≠  0 and also that 𝑥 = 𝑥(𝑡 ) ≠  0.29 

The backward Fokker-Planck equation ((Masoliver, 2018) corresponding to the forward equation 
(17) is 

𝜕𝑝

𝜕𝑡
= −𝑟

𝜕𝑝

𝜕𝑥
− 𝑓(𝑟 )

𝜕𝑝

𝜕𝑟
−

1

2
𝑔 (𝑟 )

𝜕 𝑝

𝜕𝑟
   

(A1) 

This equation has to solved with the “final condition” as 𝑡 → 𝑡: 

𝑝(𝑥, 𝑟, 𝑡|𝑥 , 𝑟 , 𝑡) = 𝛿(𝑥 − 𝑥 )𝛿(𝑟 − 𝑟 ) (A2) 

We know that the problem is invariant under translations of both time and variable 𝑥 , that is to say 

𝑝(𝑥, 𝑟, 𝑡|𝑥 , 𝑟 , 𝑡 ) = 𝑝(𝑥 − 𝑥 , 𝑟, 𝑡 − 𝑡 |𝑟 ) 

We thus define the new variables 

𝑡´ = 𝑡 − 𝑡 ,       𝑥´ = 𝑥 − 𝑥  (A3) 

so that 

𝜕𝑝

𝜕𝑡
=  −

𝜕𝑝

𝜕𝑡´
,      

𝜕𝑝

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥´
 

and (A1) reads 

𝜕𝑝

𝜕𝑡´
= −𝑟

𝜕𝑝

𝜕𝑥´
+ 𝑓(𝑟 )

𝜕𝑝

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝑝

𝜕𝑟
   

(A4) 

Note that in this notation the final condition (A2) becomes the initial condition: 

                                                
29 Note that by definition 𝑥 =  0 (cf. Eq. (13)), however we for the moment keep 𝑥 ≠  0 and set 𝑡 =  0 and 𝑥 =  0 when 
needed. 
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𝑝(𝑥´, 𝑟, 𝑡´ = 0|𝑟 ) = 𝛿(𝑥 )𝛿(𝑟 − 𝑟 ) (A5) 

The essential idea of the Feynman-Kac approach consists in using the backward equation (A4) to 
obtain an equation for the discount function defined in Eq. (15): 

𝐷(𝑡´|𝑥 ) = 𝑑𝑟 𝑒 ´ 𝑝(𝑥´, 𝑟, 𝑡|𝑟 )𝑑𝑥´ 
(A6) 

In effect, we multiply Eq. (A4) by 𝑒 ´ and integrate over 𝑥´ and 𝑟, we have 

𝜕

𝜕𝑡´
𝑑𝑟 𝑒 ´ 𝑝𝑑𝑥´

= −𝑟 𝑑𝑟 𝑒 ´
𝜕𝑝

𝜕𝑥´
𝑑𝑥´ + 𝑓(𝑟 )

𝜕

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕

𝜕𝑟
 𝑑𝑟 𝑒 ´ 𝑝𝑑𝑥´ 

which from Eq. (A6) can be written as 

𝜕

𝜕𝑡´
𝑑𝑟  𝑒 ´ 𝑝𝑑𝑥´

= −𝑟 𝑑𝑟 𝑒 ´
𝜕𝑝

𝜕𝑥´
𝑑𝑥´

+ 𝑓(𝑟 )
𝜕

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕

𝜕𝑟
 𝐷(𝑡´|𝑟 ) 

(A7) 

Let us now integrate by parts the integral term on the right hand side of Eq. (A7) and using again Eq. 
(A6) we get 

𝑑𝑟 𝑒 ´
𝜕𝑝

𝜕𝑥´
𝑑𝑥´ = 𝑑𝑟 𝑒 ´ 𝑝𝑑𝑥´ = 𝐷(𝑡´|𝑟 ) 

(A8) 

where we have taken into account the boundary condition [otherwise implicit in the definition of 𝐷 
given in Eq. (A6)] 

𝑙𝑖𝑚
`→±

[𝑒 ´ 𝑝(𝑥´, 𝑟, 𝑡´|𝑟 ] = 0 

Substituting Eq. (A8) into Eq. (A7) and setting 𝑡 =  0 which implies 𝑡´ = 𝑡 [cf. Eq. (A3)] we obtain 
the Feynman-Kac equation 

𝜕𝐷

𝜕𝑡
= −𝑟 𝐷 + 𝑓(𝑟 )

𝜕𝐷

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝐷

𝜕𝑟
 

(A9) 

with the initial condition [cf. Eqs. (A5) and (A6)] 

𝐷(0|𝑟 ) = 1 (A10) 

In some applications as, for instance, those related to bond pricing (see Appendix B) it is convenient 
to consider 𝑡 ≠  0 so that 𝑡´ = 𝑡 − 𝑡 ≠ 𝑡. In these cases it is appropriate to denote 𝐷 = 𝐷(𝑡|𝑟 , 𝑡 ) and 
the Feynman-Kac equation reads 

𝜕𝐷

𝜕𝑡
= 𝑟 𝐷 − 𝑓(𝑟 )

𝜕𝐷

𝜕𝑟
−

1

2
𝑔 (𝑟 )

𝜕 𝐷

𝜕𝑟
 

with the final condition 𝐷(𝑡|𝑟 , 𝑡)  =  1 

Appendix B. Pricing bonds. The term structure of interest rates 

In this appendix we ouline the theory of bond pricing which is closely connected to discounting. We 
mostly follow the short introduction presented in Masoliver (2018) and refer the interested reader to 
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more exhaustive and specialized texts (as, for example, Brigo and Mercurio, 2006) for further 
information. 

Definitions 

As mentioned in Sect. II, a bond is an instrument that one purchases now and delivers a payment in 
the future. From a more technical point of view, we say that a (discount) bond is a default-free claim on 
a specified sum of money to be delivered at a given future date called maturity time. Such claims are 
bought and sold by investors. Let us denote by 𝐵(𝑡 , 𝑡) the price at time 𝑡  of a discount bond maturing 
at time 𝑡 ≥ 𝑡 , with unit maturity value30 

𝐵(𝑡, 𝑡) = 1 

Bonds are classified according to the time interval to maturity τ defined as 

𝜏 = 𝑡 − 𝑡  

(𝜏 ≥ 0). Thus, if 𝜏 = 10 years we talk about a 10 year bond that is traded initially at 𝑡  (for instance, 
today) with price 𝐵(𝑡 , 𝑡 +  10) and which after 10 years has unit value. Similarly for a 3 month bond, 
3 year bond, etc. The central question consists in knowing the backward evolution of the bond price, 
from unit maturity to the initial price 𝐵(𝑡 |𝑡): 

𝑡 = 𝑡      ←     𝑡 = 𝑡 + 𝜏 

𝐵(𝑡 , 𝑡)       ←                1 

We define the instantaneous rate of return 𝑟(𝑡 , 𝑡) (also called forward rate) as the relative time 
variation of the bond price [see Eq. (2)] 

𝑟(𝑡 , 𝑡) ≡
1

𝐵(𝑡 , 𝑡)

𝑑𝐵(𝑡 , 𝑡)

𝑑𝑡
 

(B1) 

or equivalently 

𝑟(𝑡 , 𝑡) =
𝑑 𝑙𝑛 𝐵(𝑡 , 𝑡)

𝑑𝑡
 

(B2) 

The knowledge of the forward rate 𝑟(𝑡 , 𝑡) allows us to relate the initial price 𝐵(𝑡 , 𝑡) and the 
maturing price 𝐵(𝑡, 𝑡)  =  1. Indeed, taking into account this final condition on the bond price, the 
integration of (B2) directly leads to31 

𝐵(𝑡 , 𝑡) = 𝑒𝑥𝑝 − 𝑟(𝑡 , 𝑡´)𝑑𝑡´  
(B3) 

The comparison of Eq. (B3) with Eq. (9) shows that 𝐵(𝑡 , 𝑡) is the equivalent of the discount function 
𝛿(𝑡) while the forward rate 𝑟(𝑡 , 𝑡) is the equivalent of the discount rate 𝑟(𝑡). However, in what follows, 
we will use the notation 𝑟(𝑡) for the so-called spot rate which we will define below. 

Another quantity of interest is the yield to maturity 𝑦(𝑡 , 𝜏) defined by 

𝑦(𝑡 , 𝜏) ≡ −
1

𝜏
𝑙𝑛𝐵(𝑡 , 𝑡 + 𝜏) 

(B4) 

and from (B3) we see that 

𝑦(𝑡 , 𝜏) =
1

𝜏
𝑟(𝑡 , 𝑡´)𝑑𝑡´ 

                                                
30 If the final maturity price is not 1 (say, 𝐵(𝑡|𝑡)  = 𝛽) then the (initial) bond price would be 𝛽𝐵(𝑡 , 𝑡). 

31 Note that Eqs. (B3) and (11) are the same, although in this appendix we will use the notation 𝑟(𝑡 , 𝑡) instead of 𝑛(𝑡 , 𝑡) for 
the nominal (or forward) rate. 
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That is to say, the yield is the time average of the forward rate over the maturity period τ. 

A final quantity is needed, the spot rate, which is defined as the limit of the yield when maturity 
tends to 0, 

𝑟(𝑡 ) ≡ 𝑙𝑖𝑚
→

𝑦(𝑡 , 𝜏) = 𝑙𝑖𝑚
→

1

𝜏
𝑟(𝑡 , 𝑡´)𝑑𝑡´  

(B5) 

Solving the indeterminacy by expanding the integral in powers of τ, we see that the spot rate is given 
in terms of the forward rate by 

𝑟(𝑡 ) = 𝑟(𝑡 , 𝑡 ) (B6) 

In other words, the spot rate is the instantaneous forward rate. 

Let us also observe that a loan of amount 𝑀 subscribed at time 𝑡  with an interest rate 𝑟(𝑡 ) (the spot 
rate) will, at time 𝑡 + 𝑑𝑡 , increase in value to 𝑀 + 𝑑𝑀, where 

𝑑𝑀 = 𝑟(𝑡 )𝑀𝑑𝑡  (B7) 

Indeed, at any time 𝑡 , the value of the spot rate 𝑟(𝑡 ) is the instantaneous increase of the loan value, 
that is, 𝑟(𝑡 ) = 𝑑 𝑙𝑛𝑀(𝑡 )/𝑑𝑡 (compare with Eq. (B2)).32 However, subsequent values of the spot rate 
are not necessarily certain. We will see next the consequences of this fact on the time evolution of the 
bond price 𝐵(𝑡 , 𝑡). 

Dynamics of the bond price 

Suppose the spot rate 𝑟(𝑡 ) is random. In such a case, and analogously to discounting, the usual 
assumption is that 𝑟 = 𝑟(𝑡 ) is a Markovian random process with continuous trajectories; that is, a 
diffusion process obeying a stochastic differential equation of the form 

𝑑𝑟 = 𝑓(𝑟 )𝑑𝑡 + 𝑔(𝑟 )𝑑𝑊(𝑡 ) (B8) 

Where 𝑊(𝑡 ) is the standard Wiener process. We have assumed that the drift and the noise intensity 
are independent of time (as is the case in most applications) thus the time dependence of these 
coefficients is implicit through 𝑟 = 𝑟(𝑡 ). We know that this implies invariance under time translations 
and we can set 𝑡 =  0 when needed without loss of generality. 

We will now follow Vasicek (1977) and obtain the time evolution of the bond price 𝐵(𝑡 , 𝑡) at 
maturity 𝑡 >  𝑡 . To this end, let us first observe that the most natural hypothesis consists in assuming 
that the bond Price 𝐵 is a function of the initial spot rate 𝑟(𝑡 ), in addition to the obvious dependence 
on the time 𝑡  when the bond was issued. We thus write 

𝐵 = 𝐵[𝑡 , 𝑡|𝑟(𝑡 )] (B9) 

In this way 𝐵(𝑡 , 𝑡|𝑟 ) represents the price of a bond issued at time 𝑡  and maturing at time 𝑡, given 
that the initial interest rate is 𝑟 = 𝑟(𝑡 ). 

The infinitesimal variation of the bond price is then defined by 

𝑑𝐵 = 𝐵[𝑡 + 𝑑𝑡 , 𝑡|𝑟(𝑡 + 𝑑𝑡 )] − 𝐵[𝑡 , 𝑡|𝑟(𝑡 )] 

We expand in Tailor series up to second order 

𝐵[𝑡 + 𝑑𝑡 , 𝑡|𝑟(𝑡 + 𝑑𝑡 )]

= 𝐵[𝑡 , 𝑡|𝑟(𝑡 )] +
𝜕𝐵

𝜕𝑡
𝑑𝑡 +

𝜕𝐵

𝜕𝑟
𝑑𝑟 +

1

2

𝜕 𝐵

𝜕𝑡
𝑑𝑡 +

𝜕 𝐵

𝜕𝑟
𝑑𝑟 +

𝜕 𝐵

𝜕𝑡 𝜕𝑟
𝑑𝑡 𝑑𝑟

+ ⋯ 

Hence 

                                                
32 Let us remark again the close similarities with discounting. 
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𝑑𝐵 =
𝜕𝐵

𝜕𝑡
𝑑𝑡 +

𝜕𝐵

𝜕𝑟
𝑑𝑟 +

1

2

𝜕 𝐵

𝜕𝑡
𝑑𝑡 +

𝜕 𝐵

𝜕𝑟
𝑑𝑟 +

𝜕 𝐵

𝜕𝑡 𝜕𝑟
𝑑𝑡 𝑑𝑟  

(B10) 

Recalling the standard property of the Wiener noise that its infinitesimal variation is of order of 𝑑𝑡
/  

(Masoliver, 2018): 

𝑑𝑊(𝑡 ) = 𝑂 𝑑𝑡  

we have [cf. Eq. (B8)] 𝑑𝑟 = 𝑔 (𝑟 )𝑑𝑡 + 𝑂(𝑑𝑡 ) and substituting this and Eq. (B8) into Eq. (B10) we 
finally obtain up to first order in 𝑑𝑡 : 

𝑑𝐵 =
𝜕𝐵

𝜕𝑡
+ 𝑓(𝑟 )

𝜕𝐵

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝐵

𝜕𝑟
𝑑𝑡 + 𝑔(𝑟 )

𝜕𝐵

𝜕𝑟
𝑑𝑊(𝑡 ) 

(B11) 

Defining  

𝜇(𝑡 , 𝑡|𝑟 ) ≡
1

𝐵

𝜕𝐵

𝜕𝑡
+ 𝑓(𝑟 )

𝜕𝐵

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝐵

𝜕𝑟
 

(B12) 

and 

𝜎(𝑡 , 𝑡|𝑟 ) ≡ −
1

𝐵
𝑔(𝑟 )

𝜕𝐵

𝜕𝑟
 

(B13) 

we see from (B11) that the bond price satisfies the stochastic differential equation  

𝑑𝐵

𝐵
= 𝜇(𝑡 , 𝑡|𝑟 )𝑑𝑡 − 𝜎(𝑡 , 𝑡|𝑟 )𝑑𝑊(𝑡 ) 

(B14) 

showing that the bond price is a diffusion process as well. 

Averaging Eq. (B14) and bearing in mind that 𝔼[𝑑𝑊(𝑡 )] = 0 we see that 

𝜇 = (𝑡 , 𝑡|𝑟 ) =  𝔼
1

𝐵

𝑑𝐵

𝑑𝑡
 

which proves that 𝜇(𝑡 , 𝑡|𝑟 ) is the average of the instantaneous rate of return [cf. Eq. (B1)] at time 𝑡  
on a bond with maturing date 𝑡, given that the current spot rate is 𝑟 . In an analogous way one can easily 
show that 𝜎 (𝑡 , 𝑡|𝑟 ) is the variance. 

We therefore see from the above development that the bond price is a random quantity. The question 
now is: what is the price that an investor has to buy (or sell) a bond at time 𝑡  maturing at time 𝑡 =
 𝑡  +  𝜏 with the current spot rate 𝑟 ? One possible answer would be proceeding as in discounting and 
take the average over all possible realizations of the bond price. However, this procedure implies that 
the expected rate of return of a bond is invariant under risk variation -i.e., under changes of the variance 
𝜎 (𝑡 ;  𝑡|𝑟 )- a fact that investors always have in mind. We next present a procedure resulting in a 
deterministic bond price which takes into account the risk aversion of investors.33 

The market price of risk 

Consider an investor who, at time 𝑡 , sells an amount worth 𝑀  of a bond maturing at time 𝑡 . and at 
the same time buys an amount worth 𝑀  of another bond with a different maturing date 𝑡 . The total 
worth of the portfolio thus constructed is 𝑀 =  𝑀 −  𝑀 . Note that the quantities 𝑀  are multiples of 
the bond prices 𝐵(𝑡 ; 𝑡 |𝑟 ) (𝑖 =  1;  2) and, hence, obey the SDE (B14). That is to say, 

                                                
33 In practice this is true only to some extend because the theoretical procedure assumes that the market is driven by Gaussian 
white noise (i.e., the Wiener process) which is an idealized noise presenting -among other shortcomings- no fat tails, a key 
characteristic of real markets. 
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𝑑𝑀

𝑀
= 𝜇(𝑡 , 𝑡 |𝑟 )𝑑𝑡 + 𝜎(𝑡 , 𝑡 |𝑟 )𝑑𝑊(𝑡 ) 

In consequence the infinitesimal variation 𝑑𝑀 =  𝑑𝑀 −  𝑑𝑀  of the portfolio value changes over 
time according to 

𝑑𝑀 = [𝜇(𝑡 , 𝑡 |𝑟 )𝑀 − 𝜇(𝑡 , 𝑡 |𝑟 )𝑀 ]𝑑𝑡
+ [𝜎(𝑡 , 𝑡 |𝑟 )𝑀 − 𝜎(𝑡 , 𝑡 |𝑟 )M ]𝑑𝑊(𝑡 ) 

(B15) 

Suppose we choose the amounts 𝑀  and 𝑀  such that  

𝑀 =
𝑀

𝜎 − 𝜎
𝜎 ,     𝑀 =

𝑀

𝜎 − 𝜎
𝜎  

(B16) 

where 𝑀 = 𝑀 − 𝑀  and 𝜎 = 𝜎(𝑡 , 𝑡 |𝑟 ) (𝑖 = 1,2). Hence 𝑀  is proportional to 𝜎  while 𝑀  is 
proportional to 𝜎 . With this choice we have 

𝜎 𝑀 − 𝜎 𝑀 = 𝜎
𝜎 𝑀

𝜎 − 𝜎
− 𝜎

𝜎 𝑀

𝜎 − 𝜎
= 0 

and the random term in Eq. (B15) vanishes. This renders the portfolio composed of such amounts of the 
two bonds instantaneously riskless: 

𝑑𝑀 =
𝑀

𝜎 − 𝜎
(𝜇 𝜎 − 𝜇 𝜎 )𝑑𝑡  

(B17) 

where 𝜇  =  𝜇(𝑡 , 𝑡 |𝑟 ). The rate of return 𝑟  of this portfolio is 

𝑟 ≡
1

𝑀

𝑑𝑀

𝑑𝑡
=

𝜇 𝜎 − 𝜇 𝜎

𝜎 − 𝜎
 

In order to avoid arbitrage opportunities -that is, making profits without taking any risk- the rate 𝑟  
must be equal to the spot rate 𝑟 . If not, the portfolio can be purchased by taking funds borrowed at the 
spot rate, or otherwise sold and the profits lent out to accomplish a riskless arbitrage (see Vasicek, 1977, 
for more details). Therefore, 𝑟 = 𝑟 , that is 

𝑟 =
𝜇 𝜎 − 𝜇 𝜎

𝜎 − 𝜎
 

Rearranging terms we get (𝜇 − 𝑟 )/𝜎  =  (𝜇 −  𝑟 )/𝜎 , so that 

𝜇(𝑡 , 𝑡 |𝑟 ) − 𝑟

𝜎(𝑡 , 𝑡 |𝑟 )
=

𝜇(𝑡 , 𝑡 |𝑟 ) − 𝑟

𝜎(𝑡 , 𝑡 |𝑟 )
 

This equation is valid for arbitrary maturities 𝑡 , 𝑡 …: , it then follows that the ratio 
[𝜇(𝑡 , 𝑡|𝑟 ) − 𝑟 ]/𝜎(𝑡 , 𝑡|𝑟 ) must be t independent of the maturity time 𝑡. 

Let us denote by 𝑞(𝑡 |𝑟 ) the common value of such a ratio for a bond of any maturity date, given 
that the current spot rate is 𝑟 , 

𝑞(𝑡 |𝑟 ) ≡
𝜇(𝑡 , 𝑡|𝑟 ) − 𝑟

𝜎(𝑡 , 𝑡|𝑟 )
, (𝑡 ≥ 𝑡 ) 

(B18) 

The quantity 𝑞(𝑡 |𝑟 ) is called the market price of risk, as it gives the variation of the expected rate 
of return on a bond (specified by the risk premium 𝜇 − 𝑟 ) per an additional unit risk (specified by the 
standard deviation 𝜎). 

Note that if 𝑞 =  0 the spot rate 𝑟  =  𝑟(𝑡 ) and the average rate of return 𝜇 coincide. 

𝜇(𝑡 , 𝑡|𝑟 ) = 𝑟(𝑡 ) 

(𝑡 =  𝑡  + 𝜏 ) meaning that the expected instantaneous rates of return on bonds are the same for all 
maturities. 
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The term structure equation  

The above development on the market price of risk allows us to obtain a deterministic equation for 
the bond price 𝐵 = 𝐵(𝑡 , 𝑡|𝑟 ). In effect, writing Eq. (B18) as 

𝜇(𝑡 , 𝑡|𝑟 ) − 𝑟 = 𝜎(𝑡 , 𝑡|𝑟 )𝑞(𝑡 |𝑟 ) 

and substituting 𝜇 and 𝜎 by their definitions given in Eqs. (B12) and (B13), we have 

1

𝐵

𝜕𝐵

𝜕𝑡
+ 𝑓(𝑟 )

𝜕𝐵

𝜕𝑟
+

1

2
𝑔 (𝑟 )

𝜕 𝐵

𝜕𝑟
− 𝑟 = −𝑞(𝑡 |𝑟 )

1

𝐵
𝑔(𝑟 )

𝜕𝐵

𝜕𝑟
  

which after rearranging terms yields 

𝜕𝐵

𝜕𝑡
= 𝑟 𝐵 − [𝑓(𝑟 ) + 𝑔(𝑟 )𝑞(𝑡 |𝑟 )] 

𝜕𝐵

𝜕𝑟
−

1

2
𝑔 (𝑟 )

𝜕𝐵

𝜕𝑟
 

(B19) 

This equation -called the term structure equation- is a partial differential equation for 𝐵(𝑡 , 𝑡|𝑟 ), 
once the random character of the spot rate process 𝑟(𝑡) (through 𝑓 and 𝑔) is known and the market price 
of risk 𝑞(𝑡 |𝑟 ) is specified. Bond prices are obtained after solving (B19) with the final condition  

𝐵(𝑡, 𝑡|𝑟 ) = 1 (B20) 

Note that the term structure equation (B19) for the bond price is identical to the Feynman-Kac 
equation (19) for the discount as long as we make the following change of drift 

𝑓(𝑟 ) → 𝑓(𝑟 ) + 𝑔(𝑟 )𝑞(𝑡 |𝑟 ) (B21) 

On the other hand, as we have seen in Appendix A, the solution of the Feynman-Kac equation (19) 
for the discount 𝐷(𝑡|𝑟 ) is written as the average [cf. Eq. (15)] 

𝐷(𝑡|𝑟 , 𝑡 ) = 𝑑𝑟 𝑒 𝑝(𝑥, 𝑟, 𝑡|𝑟 , 𝑡 )𝑑𝑥 

where 𝑝(𝑥, 𝑟, 𝑡, |𝑟 , 𝑡 ) is the probability density function of the bidimensional diffusion process 
(𝑥(𝑡), 𝑟(𝑡)) defined by Eq. (16), 

𝑑𝑥 = 𝑟𝑑𝑡,   𝑑𝑟 = 𝑓(𝑟)𝑑𝑡 + 𝑔(𝑟)𝑑𝑊(𝑡) 

Now the analogy between the term structure equation (B19) and the Feynman-Kac equation (19) 
suggests that we can write the bond price 𝐵(𝑡 , 𝑡|𝑟 ) as an average over the different realizations of the 
spot rate 𝑟(𝑡 ). However, this averaging procedure is taken using a modified PDF called the risk-free 
measure. Thus it can be proved in a more rigorous way that (Vasicek, 1977; Duffie, 2001) 

𝐵(𝑡 , 𝑡|𝑟 ) = 𝑑𝑟 𝑒 𝑝∗(𝑥, 𝑟, 𝑡|𝑟 , 𝑡 )𝑑𝑥 

where 𝑝∗(𝑥, 𝑟, 𝑡|𝑟 , 𝑡 ) is the risk-free measure which is the PDF of the bidimensional process 
(𝑥(𝑡 ), 𝑟(𝑡 )) defined by the following pair of SDEs which include the market price of risk [see Eq. 
(B21)]: 

𝑑𝑥 = 𝑟𝑑𝑡  

𝑑𝑟 = [𝑓(𝑟) + 𝑔(𝑟)𝑞(𝑡|𝑟)]𝑑𝑡 + 𝑔(𝑟)𝑑𝑊(𝑡) (B23) 

That is, 𝑝∗ is the solution to the FPE 

𝜕𝑝∗

𝜕𝑡
= −𝑟

𝜕𝑝∗

𝜕𝑥
−

𝜕

𝜕𝑟
[𝑓(𝑟) + 𝑔(𝑟)𝑞(𝑡|𝑟)]𝑝∗ +

1

2

𝜕

𝜕𝑟
[𝑔 (𝑟)𝑝∗] 

(B24) 

with the final condition  

𝑝∗(𝑥, 𝑟, 𝑡 |𝑟 , 𝑡 ) = 𝛿(𝑥)𝛿(𝑟 − 𝑟 ) (B25) 
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Since, as we have shown in Appendix A, the Feynman-Kac approach to discounting is equivalent to 
the Fourier method described in the main text, we can apply the latter to obtain directly the bond price 
knowing only the risk neutral PDF, without having to solve the Feynman-Kac equation (B19) with 
condition (A5). Indeed, the characteristic function of the risk neutral density 𝑝∗ is the joint Fourier 
transform 

�̅�∗(𝑤 , 𝑤 , 𝑡|𝑟 , 𝑡 ) = 𝑒 𝑑𝑟 𝑒 𝑝∗(𝑥, 𝑟, 𝑡|𝑟 , 𝑡 )𝑑𝑥 

which after comparing whit Eq. (B22) yields 

𝐵(𝑡 , 𝑡|𝑟 ) = �̅�∗(𝑤 = −𝑖, 𝑤 = 0, 𝑡|𝑟 , 𝑡 ) 
(B26) 

Finally, once we know the bond price, the yield to maturity 𝑦(𝑡 , 𝜏|𝑟 ) (also called the term structure 
of interest rate) is readily evaluated from Eq. (B4): 

𝑦(𝑡 , 𝜏|𝑟 ) = −
1

𝜏
𝑙𝑛 𝐵(𝑡 , 𝑡 + 𝜏|𝑟 ) 

(B27) 

The graphic representations of 𝑦(𝑡 , 𝜏|𝑟 ) as a function of 𝑡  and for different values of the maturity 
interval 𝜏 are called yield curves and are of prime importance for practitioners. 
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