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ABSTRACT 

Most empirical evidence on choices involving dated rewards has found that the discount rate used in intertemporal choices by individuals is 
not constant, as suggested by Samuelson (1937). In effect, the discount rate can depend on both time (showing decreasing impatience, 
stationarity or increasing impatience) and amount (showing magnitude effect, separability or magnitude effect reversal). A discount function, 
able to explain almost all the stages of impatience with respect to time and amount, is the so-called q-exponential discount function deformed 
by the amount which has been recently incorporated into the ambit of econophysics. The main objective of this manuscript is to apply the 
ME-index and a new version of the hyperbolic factor to this novel discount function, thus proving its validity. These indexes are our proposal 
to measure the magnitude and the delay effects, and both have been inspired in the hyperbolic factor introduced by Rohde (2010). 

Keywords: intertemporal choice; magnitude effect; decreasing impatience; ME-index; hyperbolic factor. 

JEL classification: G4, G40. 

Una aplicación del EM-index y del factor hiperbólico a la función de descuento q-

exponencial deformada por la cuantía 

RESUMEN 

La mayor parte de la evidencia empírica sobre la elección de recompensas a lo largo del tiempo ha demostrado que la tasa de descuento 
utilizada no es constante, tal y como fue sugerido por Samuelson (1937). En efecto, la tasa de descuento puede depender del tiempo 
(pudiendo aparecer el efecto impaciencia decreciente, la estacionariedad o la impaciencia creciente) o de la cuantía (mostrando el efecto 
magnitud, la separabilidad o la reversión del efecto magnitud). Una función de descuento, capaz de explicar casi todos estos estados de 
impaciencia con respecto al tiempo y la cuantía, es la denominada función q-exponencial deformada por la cuantía, recientemente 
incorporada al ámbito de la Econofísica. El objetivo principal de este artículo es la aplicación del EM-index y de una nueva versión del factor 
hiperbólico a esta novedosa función de descuento, y así comprobar su validez. Estos índices constituyen nuestra propuesta para medir los 
efectos magnitud y plazo, y ambos están inspirados en el factor hiperbólico introducido por Rohde (2010). 

Palabras clave: elección intertemporal; efecto magnitud; impaciencia decreciente; EM-index, factor hiperbólico. 

Clasificación JEL: G4, G40. 
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1. INTRODUCTION 

The framework of this paper is intertemporal choice, a field derived from the classic economics 
aimed to explain how people make their future decisions involving dated rewards. The importance of 
this discipline in research has been increasing during last decades, because such decisions imply not 
only individual but also important social interests. 

In 1937, Samuelson proposed the Discounted Utility (hereinafter, DU) model in the ambit of 
intertemporal choice. Such model is based on assuming that people discount future incomes at a 
constant discount rate, that is to say, the discount rate does not change when time or amount increases. 
Despite these limitations, the model received a strong support from economists, given its similarity to 
the compound interest, which led to its generalization as a normative model. 

However, in the last decades, many empirical studies have emerged, showing the finding of 
different anomalies, that is to say, individual behaviours which contradict the setting proposed by the 
DU model. Among these anomalies, we can highlight the decreasing impatience and the magnitude 
effect. 

On the one hand, decreasing impatience arises when an individual decides to choose a smaller, 
sooner better than a larger, later reward. However, if the delay corresponding to both amounts is 
increased by a same time period, they would probably choose the larger, later instead of the smaller, 
sooner amount. In this case, we say that a preference reversal or dynamic inconsistency takes place. 
For example, a person could prefer the receipt of €50 today rather than €60 in a month, but also she 
could prefer €60 in a year and a month rather than €50 in a year. Although the waiting time between 
both rewards is the same in both cases, viz a month, the reward is less preferred when time is closer 
than distant. Some works revealing such anomalies are Green et al. (1981), Green, Fristoe and 
Myerson (1994), Kirby and Herrnstein (1995) and Bocquého, Jacquet and Reynaud (2013). Some of 
the most well-known models used to explain the decreasing impatience and the dynamic inconsistency 
are the hyperbolic discount (Ainslie and Herrnstein, 1981; Harvey, 1986; Loewenstein and Prelec, 
1992; Green, Fry and Myerson, 1994) and the quasi-hyperbolic function (Laibson, 1997; Prelec, 2004; 
Benhabib, Bisin and Schotter, 2010). Additionally, Rohde (2010) proposed a measure of this effect, 
the so-called hyperbolic factor. 

On the other hand, the magnitude effect is one of the most robust anomalies presented by the DU 
model which means higher discount rates when discounting smaller than larger amounts. That is to 
say, the discount rate decreases as the reward amount increases. Obviously, a necessary condition for 
the existence of the magnitude effect is that the discount function, involved in the process of decision 
making, depends on the amount, and not only on the time. Said in other words, this anomaly can be 
only explained by using non-separable discount models (Killeen, 2009; Benhabib, Bisin and Schotter, 
2010; Noor, 2011). For example, a person could prefer €50 now rather than €100 in one year, but also 
€10,000 in one year rather than €5,000 now. Although the relative gain is the same in both cases 
(50%), people tend to be more patient towards the receipt of the larger amount. This effect was 
revealed by numerous empirical studies (Thaler, 1981; Green, Myerson and McFadden, 1997; 
Chapman and Winquist, 1998; Kirby, Petry and Bickel, 1999; Schoenfelder and Hantula, 2003; Estle 
et al., 2006; Benhabib, Bisin and Schotter, 2010; Andersen et al., 2013; Meyer, 2015). 

A discount function which is able to explain both decreasing impatience and magnitude effect is 
the so-called q-exponential discount function deformed by amount, recently proposed by Cruz 
Rambaud, Parra Oller and Valls Martínez (2018). This function arises when applying a general 
methodology to obtaining non-separable functions to the q-exponential discount function proposed by 
Cajueiro (2006), resulting in: 

1/(1 )
( , ) ;

[1 (1 ) ]α q

x
F x t

k q tx 


 
  1 ;q  ;α  k  . 

(1) 
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Depending on the values of k, q and , this function can explain different stages of inconsistency 
(decreasing impatience (DI), stationarity and increasing impatience (II)) and separability (magnitude 
effect (ME), separability and reverse magnitude effect), as displayed in Table 1. 

 

 
Table 1 

Presence of anomalies depending on the values of q and α 11. 

 1q α   1q α   1q α   

( ,0)α   ME & DI ME & Stationary ME & II 

0α   Separable & DI 
Separable & 

Stationary 
Separable & II 

(0, )α    
Reverse ME & DI 

Reverse ME & 

Stationary 
Reverse ME & II 

Source: Cruz Rambaud, Parra Oller and Valls Martínez (2018). 

The q-exponential discount function is an extension of the generalized exponential function studied 
in nonextensive thermodynamics (Tsallis, 1994) and has a great importance in econophysics. Some of 
its limitations have been solved by the q-exponential discount function deformed by the amount. The 
main objective of this paper is to apply the ME-index and a new version of the hyperbolic factor to 
this novel discount function, thus proving its effectiveness in explaining the impatience with respect to 
the amount and the time. These indexes are our proposal to measure the magnitude and the delay 
effects, and both have been inspired in the hyperbolic factor introduced by Rohde (2010). 

After this introduction, in Section 2, we introduce the concept of ME-index to detect the presence 
of the magnitude effect, by showing its use with several examples. Likewise, in Section 3, we apply 
this index to the q-exponential discount function deformed by the amount. Additionally, in sections 4 
and 5, we present a new version of the hyperbolic factor (Rohde, 2010) by applying it to the 
aforementioned discount function. Finally, Section 6 summarizes and concludes. 

2. THE ME-INDEX 

The objective of this section is to provide a parameter, called the ME-index, able to detect and 
measure the presence of the magnitude effect by starting from two indifference pairs. To do this, 
assume that the preference relation f  satisfies the axioms of weak order (reflexive, complete and 
transitive), monotonicity and continuity. Starting from the following pairs of indifference: 

( , ) ~ ( , )x s y t  and ( , ) ~ ( , )dx s uy t , 

where 0 x y   and 0 s t  , the ME-index is defined as follows: 

( )
ME-index: .

u d y

ux dy





 

(2) 

 

 

 

                                                
11 The discount function (1) is not defined for 1q  . Therefore, if 1q α   and 0α  , the resulting discount function 

(exponential) has been obtained by taking 1q  . 
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2.1. Case in which the magnitude effect holds. 

The magnitude effect holds if u d , which implies 0.u d   Moreover, as x y , one has 

ux dy , which implies 0ux dy  . On the other hand, observe that, in this case, 

( ) 0ux dy uy dy u d y      . Therefore, 

( ) ( )
ME-index 1.

( )

u d y u d y

ux dy u d y

 
  

 
 

As, moreover, the ME-index is, in this case, positive, one has: 

0 ME-index 1.   

Let us see an example. 

Example 2.1. Let us calculate the ME-index with the following rewards: 

( , ) (100,2)x s   and ( , ) (200,2)dx s  , 

where 2d  . Firstly, we are going to calculate the rewards which are indifferent to the previous ones 
at instant 5t  . To do this, we will use the non-separable discount function, proposed by Noor (2011) 
to explain the magnitude effect: 

/ /α αs x t yxδ yδ . 

Based on the former equality, for 0.2δ  and 0.5,α   we can obtain the amounts y  and uy  
satisfying the following equivalences: 

( , ) ~ ( , ) (100,2) ~ (142.29,5)x s y t   

and 

( , ) ~ ( , ) (200,2) ~ (261.89,5)dx s uy t   

from where 1.840559717,u   and so: 

ME-index 0.225670.  

As the ME-index is located between 0 and 1, the magnitude effect holds 

2.2. Case in which the magnitude effect reversal holds. 

The magnitude effect reversal holds if u d , which implies 0u d  . However, there is not a 
general relation between ux  and dy , so that the reversal of the magnitude effect can appear in two 
different ways, depending on such relation: 

 

2.2.1. Case in which ux dy . 

If ux dy  (or, equivalently, 1
u y

d x
  ), one has 0ux dy   and, therefore, 

ME-index 0 . 
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This magnitude effect reversal is said to be weak. Let us see an example. 

Example 2.2. Let us calculate the ME-index with the following rewards: 

( , ) (10,1)x s   and ( , ) (2,000;1)dx s  , 

where 200d  . Firstly, we are going to calculate the rewards which are indifferent to the former ones 
at instant 3t  . To do this, we will use the non-separable discount function proposed by Myerson and 
Green (1995) which does not satisfy the magnitude effect, giving rise to the following equation:  

( ) ( )ks ktx h e h y h e h      . 

Based on the former equality, for 0.5k   and 5,h   we can obtain the amounts y  and uy  
satisfying the following equivalences: 

( , ) ~ ( , ) (10,1) ~ (18.59,3)x s y t   

and 

( , ) ~ ( , ) (2,000;1) ~ (5,427.97;3)dx s uy t  , 

from where 291.9612875u  , and so: 

ME-index 2.141267.   

As the ME-index is less than 0, the weak magnitude effect reversal holds. 

2.2.2. Case in which ux dy . 

If ux dy  (o, equivalently, 1
y u

x d
  ), the same as the paragraph 2.1, we can put 

0 ( )ux dy uy dy u d y      . Therefore, 

( ) ( )
ME-index 1.

( )

u d y u d y

ux dy u d y

 
  

 
 

Thus, in this case, one has: 

ME-index 1.  

This magnitude effect reversal is said to be moderate. Let us see an example. 

Example 2.3. Let us calculate the ME-index with the following rewards: 

( , ) (0.5,2)x s   and ( , ) (0.75,2)dx s   , 

where 1.5d  . Firstly, we are going to calculate the rewards which are indifferent to the former ones 
at instant 2.1t  . To do this, we will use the following non-separable discount function which does 
not satisfy the magnitude effect, giving rise to the following equation: 

2 3 2 31 1

x y

x s y t


 
. 

Based on the former equality, we can obtain the amounts y  and uy  satisfying the following 
equivalences: 
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( , ) ~ ( , ) (0.5,2) ~ (0.6,2.1)x s y t   

and 

( , ) ~ ( , ) (0.75,2) ~ (1.39,2.1)dx s uy t  , 

from where 2.3u  , and so: 

.92.1index-ME   

As the ME-index is greater than 1, the moderate magnitude effect reversal holds. 

Table 2 summarizes the different cases analyzed in this section. 

 

Table 2. 
Different types of magnitude effect according to the ME-index value. 

Magnitude effect Magnitude effect reversal Separability 

0 < ME-index < 1 ME-index < 0 ME-index > 1 ME-index = 0 

--- Weak Moderate --- 
Source: Own elaboration. 

3. APPLYING THE ME-INDEX TO THE Q-EXPONENTIAL FUNCTION DEFORMED BY 

THE AMOUNT 

After seeing in Section 2 how the ME-index works, it is time to apply this index to the 
intertemporal decisions governed by a q-exponential discount function deformed by the amount (Cruz 
Rambaud, Parra Oller and Valls Martínez, 2018). To do this, we are going to consider the different 
stages of separability that this function can represent depending on the value of parameter . 

3.1. Case in which ( ,0)α  . 

For these values, the q-exponential discount function deformed by the amount explains the 
magnitude effect (see Table 1), then the ME-index must be located in the interval (0,1). Let us see a 
confirming example. 

Example 3.1. Let us calculate the ME-index with the following rewards: 

( , ) (60,1)x s   and ( , ) (1,200;1)dx s  , 

where 20d  . Firstly, we are going to calculate the rewards which are indifferent to the former ones 
at instant 3t  . To do this, we will use the q-exponential discount function deformed by the amount, 
giving rise to the following equation: 

1/(1 ) 1/(1 )[1 (1 ) ] [1 (1 ) ]α q α q

x y

k q sx k q ty
 


   

, 

Based on the former equality, for 0.15,α    0.3k   and 2,q    we can obtain the amounts y  

and uy  satisfying the following equivalences: 

( , ) ~ ( , ) (60,1) ~ (70.63041,3)x s y t   
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and 

( , ) ~ ( , ) (1,200;1) ~ (1,361.576;3)dx s uy t  , 

from where 19.2775u  , and so: 

ME-index 0.199376  

As the ME-index is located between 0 and 1, the magnitude effect holds. Then, the ME-index 
confirms the fact that this function explains the magnitude effect for negative values of α . 

3.2. Case in which 0α  . 

For this value, the q-exponential discount function deformed by the amount is separable, then the 
ME-index must be equal to 0. Let us see a confirming example. 

Example 3.2. Let us calculate the ME-index with the following rewards: 

( , ) (50,3)x s   and ( , ) (500;3)dx s  , 

where 10d  . Based on the equality used in Example 3.1, for 0,α   0.3k   and 0.225523,q    we 

can obtain the amounts y  and uy , at instant 5t  , satisfying the following equivalences: 

( , ) ~ ( , ) (50,3) ~ (63.86,5)x s y t   

and 

( , ) ~ ( , ) (500,3) ~ (638.60,5)dx s uy t  . 

from where 10u  , and so: 

.0index-ME   

Then, the ME-index confirms the separability of this function when 0.α   

3.3. Case in which (0, )α  . 

For these values, the q-exponential discount function deformed by the amount explains the reversal 
of magnitude effect, then the ME-index must be either negative or greater than 1. Let us see a 
confirming example. 

Example 3.3. Let us calculate the ME-index with the following rewards: 

( , ) (3,2)x s   and ( , ) (600,2)dx s  , 

where 200d  . Based on the equality used in Example 3.1, for 2.383384,α   0.3k   and 4,q    

we obtain the amounts y  and uy , at instant 4t  , satisfying the following equivalences: 

( , ) ~ ( , ) (3,2) ~ (3.8839,4)x s y t   

and 

( , ) ~ ( , ) (600,2) ~ (885.8431,4)dx s uy t   

from where 228.08u  , and so: 
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ME-index 1.178582.   

As the ME-index is negative, the reversal of magnitude effect holds. Then, the ME-index confirms 
the fact that this function explains the reversal of magnitude effect when (0, )α  . 

4. THE HYPERBOLIC FACTOR 

In this section, we are going to present an improvement of the so-called hyperbolic factor 
introduced by Rohde (2010). This factor measures the decreasing impatience in intertemporal choice. 

Consider ,x y X , where mX   , the set of possible incomes, and , , ,s t τ σ T , where T  , 
the set of possible instants involved in the intertemporal choice. As in Section 2, let us suppose that the 
preference f  satisfies the axioms of weak order (reflexive, transitive and complete), monotonicity and 

continuity. However, assume that the preference f  does not satisfy the axiom of stationarity since it 

shows decreasing impatience. This means that, for all ,s t  ,τ T  

 yx 0  and ( , ) ~ ( , )x s y t  implies ( , ) ( , )x s τ y t τ p , and 

 0x y   and ( , ) ~ ( , )x s y t  implies ( , ) ( , )x s τ y t τ f . 

The absence of the stationarity axiom shows that time differences tend to be less important, when 
these occur in the distant future. 

By considering again the equivalent rewards ( , ) ~ ( , )x s y t , where ,s t  and by assuming that 

( , ) ~ ( , )x s σ y t τ  , decreasing impatience implies that 0τ σ   which, obviously, is a measure of 
decreasing impatience. However, Rohde (2010) proposes another measure which allows to distinguish 
the different stages of impatience and which remains constant for all models related to hyperbolic 
discounting. This measure is the so-called hyperbolic factor which is defined starting from two pairs of 
indifferences ( , ) ~ ( , )x s y t  and ( , ) ~ ( , )x s σ y t τ  , in the following way: 

( , , , ) : .
τ σ

H s t σ τ
tσ sτ





 

(3) 

Nevertheless, in this paper we are going to introduce an improvement of the hyperbolic factor 
which will facilitate the subsequent analysis, as follows: 

( )
( , , , ) : .

t τ σ
H s t σ τ

tσ sτ

 



 

(4) 

4.1. Case in which the impatience is increasing. 

Increasing impatience holds if τ σ , which implies 0τ σ  . Moreover, as s t , one has 
,sτ tσ  which implies 0tσ sτ  . Therefore, 

.0),,,(  tsH  

On the other hand, observe that, in this case, ( ) 0tσ sτ tσ tτ t σ τ      . Therefore, 

.1
)(

)()(
),,,( 




















t

t

st

t
tsH  

Thus, in this case, one has: 
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.0),,,(1   tsH  

Let us see an example. 

Example 4.1. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ~ ( , ) ( ,10) ~ (10,15).x s y t x  

Firstly, we are going to calculate the reward x to complete the former indifference. To do this, we 
will use the linear discount function, giving rise to the following equation: 

)1()1( ityisx   

Based on the previous equality, for 0.05,i   we can obtain 5x  , remaining: 

( , ) ~ ( , ) (5,10) ~ (10,15)x s y t   

Now, consider the following indifference, where 2τ  : 

( , ) ~ ( , ) (5,10 ) ~ (10,15 2).x s σ y t τ σ      

Using the former linear equation, the parameter σ  can be calculated, resulting in: 

( , ) ~ ( , ) (5,10 4) ~ (10,15 2)x s σ y t τ      

Therefore, 

(10,15,4,2) 0.75 0H      

As the hyperbolic factor is negative, the impatience is increasing. 

4.2. Case in which the impatience is decreasing. 

Decreasing impatience holds if ,τ σ  which implies 0τ σ  . However, in this case, there is not a 
general relationship between sτ  and tσ . 

4.2.1. Case in which sτ tσ . 

If sτ tσ  (or, equivalently, 1
τ t

σ s
  ), then 

( )
0

τ t s
τ σ

t


   . Therefore, 

( , , , ) 0.H s t σ τ   

In this case, we will say that the impatience is moderately decreasing. 

Let us see an example. 

Example 4.2. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ~ ( , ) ( ,1) ~ (20,3).x s y t x  

Firstly, we are going to calculate the reward x to complete the former indifference. To do this, we 
will use the generalized hyperbolic discount function introduced by Loewenstein and Prelec (1992), 
giving rise to the following equation: 

/ /(1 ) (1 )r h r hx hs y ht    , where 0, 0.h r   

Based on the previous equality, for 0.5h   and 0.2002252,r   we can obtain that 16.30x  , 
remaining: 
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( , ) ~ ( , ) (16.30,1) ~ (20,3)x s y t   

Now, consider the following indifference, where 1τ  : 

( , ) ~ ( , ) (16.30,1 ) ~ (20,3 1).x s σ y t τ σ      

Using the former equation, the parameter σ  can be calculated, resulting in: 

( , ) ~ ( , ) (16.30,1 0.6) ~ (20,3 1)x s σ y t τ      

Therefore, 

(1,3,0.6,1) 1.5 0H     

As the hyperbolic factor is positive, the impatience is moderately decreasing. 

4.2.2. Case in which sτ tσ . 

If sτ tσ  (or, equivalently, 1
τ t

σ s
  ), then 

( )
0

t s
τ σ τ

t


   . Therefore, 

.0),,,(  tsH  

But observe that, in this case, 0 ( )tσ sτ tσ tτ t σ τ      . Therefore, 

( ) ( )
( , , , ) 1.

( )

t τ σ t τ σ
H s t σ τ

tσ sτ t σ τ

  
   

 
 

Therefore, in this case, one has: 

( , , , ) 1.H s t σ τ    

In this case, we will say that the impatience is strongly decreasing. 

4.3. Case in which the impatience is constant. 

Finally, if the impatience is constant then the hyperbolic factor is equal to 0: 

.0),,,(  tsH  

Let us see an example. 

Example 4.3. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ~ ( , ) ( ,2) ~ (100,5).x s y t x  

Firstly, we are going to calculate the reward x to complete the former indifference. To do this, we 
will use the exponential discount function, giving rise to the following equation: 

rt rsye xe   

Based on the previous equality, for 0.5,r   we can obtain that 22.31x  , remaining: 

( , ) ~ ( , ) (22.31,2) ~ (100,5)x s y t  . 

Now, consider the following indifference, where 2τ  : 



92                           SALVADOR CRUZ RAMBAUD, ISABEL MARÍA PARRA OLLER Y MARÍA DEL CARMEN VALLS MARTINEZ 

Estudios de Economía Aplicada, 2019: 96-108 – Vol. 37.2 

( , ) ~ ( , ) (22.31,2 ) ~ (100,5 2).x s σ y t τ σ      

Using the former equation, the parameter σ  can be calculated, resulting in: 

( , ) ~ ( , ) (22.31,2 2) ~ (100,5 2)x s σ y t τ      

Therefore, 

(2,5,2,2) 0H    

As the hyperbolic factor is zero, the impatience is constant. 

Table 3 summarizes the different cases analyzed in this section. 

 

Table 3 
Different levels of impatience with respect to the hyperbolic factor. 

Increasing 

Impatience (II) 

Decreasing 

Impatience (DI) 

Constant 

Impatience 

0),,,(1   tsH  0),,,(  tsH  1),,,(  tsH  0),,,(  tsH  

--- Moderately DI Strongly DI --- 

Source: Own elaboration. 

5. APPLYING THE NEW HYPERBOLIC FACTOR TO THE Q-EXPONENTIAL 

FUNCTION DEFORMED BY THE AMOUNT 

After defining a new version of the hyperbolic factor introduced by Rohde (2010), and analogously 
to Section 3, we are going to apply this novel index to the q-exponential discount function deformed 
by the amount (Cruz Rambaud, Parra Oller and Valls Martínez, 2018). In this case, we are going to 
consider the different stages of impatience that this function can achieve depending on the values of q. 

5.1. Case in which 1q α  . 

For these values, the q-exponential discount function deformed by the amount explains decreasing 
impatience, then the hyperbolic factor must be positive or less than 1. Let us see a confirming 
example. 

Example 5.1. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ~ ( , ) ( ,3) ~ (50,5).x s y t x  

Firstly, we are going to calculate the reward x to complete the former indifference. To do this, we 
will use the q-exponential discount function deformed by the amount, giving rise to the following 
equation: 

1/(1 ) 1/(1 )[1 (1 ) ] [1 (1 ) ]α q α q

x y

k q sx k q ty
 


   

. 

Based on the previous equality, for 3,α   0.3k   and 2,q    we can obtain that 49.99976x  , 

remaining: 

( , ) ~ ( , ) (49.99976,3) ~ (50,5)x s y t   

Now, consider the following indifference, where 2τ  : 

( , ) ~ ( , ) (49.99976,3 ) ~ (50,5 2).x s σ y t τ σ      
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Using the former equation, the parameter σ  can be calculated, resulting in: 

( , ) ~ ( , ) (49.99976,3 1.998853) ~ (50,5 2)x s σ y t τ      

Therefore, 

(3,5,1.99,2) 0.001435 0H     

Thus, the value of hyperbolic factor confirms that this function explains the (moderately) 
decreasing impatience when 1q α  . 

5.2. Case in which 1q α  . 

For these values, the q-exponential discount function deformed by the amount explains increasing 
impatience, then the hyperbolic factor must be in the interval (1,0). Let us see a confirming example. 

Example 5.2. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ~ ( , ) ( ,7) ~ (100,10).x s y t x  

Based on the same equality as Example 5.1, for 3,α   0.3k   and 1,q    we can obtain that 

99.99991x  , remaining: 

( , ) ~ ( , ) (99.99991,7) ~ (100,10)x s y t   

Now, consider the following indifference, where 5τ  : 

( , ) ~ ( , ) (99.99991,7 ) ~ (100,10 5).x s σ y t τ σ      

Using the equation of Example 5.1, the parameter σ  can be calculated, resulting in: 

( , ) ~ ( , ) (99.99991,7 5.003626) ~ (100,10 5)x s σ y t τ      

Therefore, 

(7,10,5.003626,5) 0.00241 0H      

Thus, the value of hyperbolic factor confirms that this function explains the increasing impatience 
when 1q α  . 

 

5.3. Case in which 1q α  . 

For these values, the q-exponential discount function is stationary, so that the hyperbolic factor must 

be equal to 0. Let us see a confirming example. 

Example 5.3. Let us calculate the hyperbolic factor with the following rewards: 

( , ) ( , ) ( ,2) (1,000,4).x s y t x� �  

Based on the same equality as Example 5.1, for 3,α   0.3k   and 4,q   we can obtain that 

1,000x  , remaining: 

( , ) ( , ) (1,000,2) (1,000,4)x s y t � � . 

Now, consider the following indifference, where 1  : 

( , ) ( , ) (1,000,2 ) (1,000,4 1).x s σ y t τ σ    � �  
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Using the former equation, the parameter σ  can be calculated, resulting in: 

( , ) ( , ) (1,000,2 1) (1,000,4 1)x s σ y t τ    � � . 

Therefore, 

(2,4,1,1) 0H   . 

Thus, the value of hyperbolic factor confirms that this function is stationary when 1q α  . 

6. CONCLUSION 

The objective of this manuscript has been to apply the ME-index, our proposal to measure the 
magnitude effect, to the q-exponential discount function deformed by the amount, recently emerged in 
the field of econophysics. This function is able to explain different stages of impatience respect to the 
amount (magnitude effect, separability and magnitude effect reversal), as well as different stages of 
impatience with respect to time (decreasing impatience, stationarity and increasing impatience). 

To do this, in Section 2, we have introduced the ME-index as a measure arising from two pairs of 
indifference. This index is inspired in the hyperbolic factor introduced by Rohde (2010). Indeed, it 
provides a characterization of some non-separable models, as the generalized exponential function of 
Noor (2011) for which this index presents values between 0 and 1, being zero for those models which 
present separable amount and exponential time. Finally, if the index is negative or greater than 1, the 
intertemporal choices exhibit the magnitude effect reversal. 

In Section 3, we have applied the ME-index to the q-exponential discount function deformed by the 
amount, proposed by Cruz Rambaud, Parra Oller and Valls Martínez (2018). In effect, we prove that 
this function can explain the different stages of impatience with respect to the amount starting from 
two indifference pairs, depending on the values of parameter α . 

Additionally, in Section 4, we have presented an improvement of the hyperbolic factor introduced 
by Rohde (2010) by explaining decreasing impatience when the new parameter is less than 1 or 
greater than 0. Moreover, it explains increasing impatience when the hyperbolic factor is between 1 
and 0. Finally, when the discount rate is constant with respect to time, the hyperbolic factor is zero. 

In Section 5, we have applied our new version of the hyperbolic factor to the q-exponential discount 
function deformed by the amount (Cruz Rambaud, Parra Oller and Valls Martínez, 2018). In this way, 
we have proved that, in effect, this function explains decreasing impatience when 1q α  , 

independently of the values of parameter α . Likewise, it also explains increasing impatience when 
1q α  , and it is stationary when 1 .q α   

Along this paper, we have shown that it is possible to prove the explicative validity of a discount 
function, specifically the q-exponential discount function deformed by the amount, by using these two 
indexes: the ME-index (impatience with amount) and the new hyperbolic factor (impatience with 
time). 
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