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ABSTRACT 
This essay seeks to rehabilitate the capital asset pricing model by splitting beta, the basic unit of systematic risk, into 
subatomic (or “baryonic”) components. By analogy to quantum chromodynamics and other aspects of the Standard 
Model of particle physics, this essay bifurcates beta on either side of mean returns and into distinct components 
reflecting relative volatility and correlation, as well as cash-flow and discount-rate effects. Splitting the atom of 
systematic risk answers some of the most troubling anomalies and puzzles in finance, including abnormal returns on 
small-cap and value stocks, the low-volatility anomaly, and the equity premium puzzle. 
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Premium 

Dinámica de la Beta Bariónica: Un modelo Econofísico de Riesgo 
Sistemático 

RESUMEN 
Este artículo pretende la rehabilitación del modelo de valoración de activos financieros mediante la escisión de la 
beta, la unidad básica de riesgo sistemático, en componentes subatómicos (o “bariónicos”). Por analogía con la 
cromodinámica cuántica y otros aspectos del modelo estándar de la física de partículas, se bifurca la beta a ambos 
lados de los rendimientos medios y en distintos componentes que reflejan la volatilidad relativa y la correlación, así 
como en los efectos flujo de caja y tasa de descuento. La escisión del átomo del riesgo sistemático da respuesta a 
alguna de las más controvertidas anomalías (y puzles) in finanzas, tales como los rendimientos anómalos de las 
acciones de baja capitalización y de valor, la anomalía relativa a la baja volatilidad y el puzle de la prima de riesgo de 
las acciones. 
Palabras clave: CAPM, acciones de pequeña capitalización, valor, beta, física, modelo standard, anomalía de baja 
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1.  INTRODUCTION 
This essay summarizes the central argument of my recent book, Econophysics 

and Capital Asset Pricing: Splitting the Atom of Systematic Risk (Chen, 2017). A 
generation of financial scholars has assaulted the conventional capital asset 
pricing model (CAPM) and beta as its basic unit of systematic risk.  Econophysics 
and Capital Asset Pricing seeks to rehabilitate the CAPM splitting beta into 
subatomic (or “baryonic”) components. 

By analogy to quantum chromodynamics and other aspects of the Standard 
Model of particle physics, I bifurcate beta on either side of mean returns and into 
distinct components reflecting relative volatility and correlation, as well as cash-
flow and discount-rate effects. Splitting the atom of systematic risk answers some 
of the most troubling anomalies and puzzles in finance, including abnormal 
returns on small-cap and value stocks, the low-volatility anomaly, and the equity 
premium puzzle. 

2.  THE STRUCTURE OF AN ECONOPHYSICAL REVOLUTION 
In finance as in other disciplines, “[n]ormal science does not aim at novelties 

of fact or theory and, when successful, finds none” (Kuhn, 1970, p. 52). When 
they arise, “fundamental novelties of fact and theory” spur progress through “the 
recognition that nature has somehow violated the paradigm-induced expectations 
that govern normal science” (ibid., pp. 52-53). 

Intellectual coherence assumes supreme importance in finance, a field devoted 
to elaborating “uncertainty” in “theory and [in] empirical implementation” 
(Campbell, Lo and MacKinlay, 1997, p. 3). Finance in general and asset pricing 
in particular represent fantastic instances of scientific progress because the 
“random shocks” that propel knowledge happen to be “the subject matter” of 
these branches of economics (Campbell, 2000, p. 1515). 

The history of mathematical finance falls into two phases (Merton, 1987, pp. 
483-484). The first phase consisted of constructing an elegant, symmetrical set 
of rational models based on efficient markets and asset pricing according to 
conventional beta as its unitary, basic measure of systematic risk. From 1979 
through 1999, financial scholars sought primarily to apply “the Arrow-Debreu 
model of general equilibrium to financial markets” (Campbell, 2000, p. 1516). 

By contrast, the second phase of mathematical finance has consisted largely of 
deconstructing the conventional model’s economic mechanisms and behavioral 
assumptions. Multi-factor models exposed technical flaws in the specification of 
risk-return relationships. Financial anomalies and puzzles revealed inefficiencies 
in markets that had been presumed perfect in their transmission and assimilation 
of new information. Investor psychology deviated from classical presuppositions 
of rationality. 
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Econophysics applies “the techniques of statistical physics and nonlinear 
dynamics” to complex economic problems (Sinha, Chatterjee, Chakraborti and 
Chakrabarti, 2011, p. 1). Without attempting “the complete statistical 
characterization of the stochastic process of price changes of a financial asset” 
(Mantegna and Stanley, 2000, pp. 6-7), this essay harnesses econophysics as the 
basis of “a theoretical model that is able to encompass all the essential features of 
real financial markets” (ibid., p. 7; see also Roehner, 2005). 

Econophysics bluntly proclaims that economics needs a scientific revolution 
(Bouchaud, 2008). But “science seldom proceeds in [a] straightforward logical 
manner” (Watson, 2001, p. xi). As tentative as they are tumultuous, scientific 
“steps forward (and sometimes backward)” proceed as “an adventure 
characterized both by youthful arrogance and by the belief that the truth, once 
found, would be simple as well as pretty” (ibid.). The econophysical revolution in 
finance thus follows a dialectic familiar throughout science: thesis, antithesis, 
synthesis (Fichte, 1993a; Fichte, 1993b). 

3. THE CONVENTIONAL CAPITAL ASSET PRICING MODEL 
The capital asset pricing model quantifies the risk-based premium for any 

asset relative to a risk-free benchmark: 

 

ra = rf + βa (rm − rf )  
where ra, rm, and rf respectively represent returns on the asset, the broader 
market, and a risk-free investment, and βa represents the asset’s beta vis-à-vis 
the market portfolio (Korajczyk, 1999, p. xv). This formula boasts convenience 
and “seductive simplicity” (Fama and French, 2004, p. 44). 

The capital asset pricing model remains the dominant paradigm in financial 
risk management (Levy, 2012, pp. 4-5). “[M]arket professionals (and academics) 
still think about risk in terms of market β” (Fama, 1991, p. 1593; see also 
Pettengil et al., 1995). The CAPM thrives despite its distinct lack of academic 
support.  “It takes a better theory to kill an existing theory,” and the financial 
profession has “yet to see [a] better theory” (Koller et al., 2010, p. 261). 

Reminiscent “of cartoon characters like Wile E. Coyote who have the ability 
to come back to original shape after being blown to pieces,” the CAPM endures 
“because (a) the empirical support for other asset-pricing models is no better, 
(b) the theory behind the CAPM has an intuitive appeal that other models lack, 
and (c) the economic importance of the empirical evidence against the CAPM … 
is ambiguous” (Jagannathan and Wang, 1996, p. 4). “While there are other 
models to determine equity, CAPM is probably the most widely used” (Pantaleo 
and Ridings, 1996, p. 433 n.52).  In professional practice if not academic theory, 
the capital asset pricing model is alive and well (Levy, 2009). 
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Many predictive flaws in finance stem from the mathematically elegant but 
practically unrealistic construction of “beautifully Platonic models on a Gaussian 
base” (Taleb, 2007, p. 279). From the capital asset pricing model to the Black-
Scholes model of option pricing (Black and Scholes, 1973; Merton, 1973), Robert 
Merton’s distance-to-default model of credit risk (Merton, 1974), the RiskMetrics 
specification of value-at-risk (Mina and Xiao, 2001; Berkowitz and O’Brien, 
2002), and the Gaussian copula (Jaworski et al., 2010; Liu, 2000; Nelsen, 1999), 
much of the edifice of finance rests upon the normal distribution (Mandelbrot and 
Hudson, 2004). 

In reality, returns are skewed (Aparicio and Estrada, 2001; Bekaert et al., 
1998; Chunhachinda et al., 1997; Peiró, 1999) and exhibit heavier than normal 
tails (Gray and French, 1990; Kon, 1984; Markowitz and Usmen, 1996; Mills, 
1995). Many risks follow decidedly non-Gaussian distributions (Campbell, Lo 
and MacKinlay, 1997, pp. 17, 81, 172, 498). Large swings of 3σ to 6σ occur so 
often that “[e]xtreme price swings are the norm in financial markets -not 
aberrations” (Mandelbrot and Hudson, 2004, p. 18). Empirical departures from 
predicted relationships between returns and volatility take “a shot straight at the 
heart” of asset pricing theories (Fama and French, 1992, p. 438).  

Beta nevertheless “remains the most explanatory element of the risk premium 
in most asset pricing models” (Bellelah, Bellelah, Ameur and Hafsia, 2017, p. 
864). Attacks on “standard deviation and its variations” as risk measures have 
failed to dislodge beta (Kaplanski, 2004, p. 637). Beta endures if only because 
“relatively little effort has been made” to devise “a better risk measure” (ibid.). 
Even models purporting to dismiss beta as “insignificant” continue to treat beta as 
“an important explanatory variable,” despite deprecating its traditional status as 
“the main explanatory variable” (Levy, 2012, p. 4). “[I]n all… models, the market 
risk of a security will affect its equilibrium expected return, and indeed, for most 
common stocks, market risk will be the dominant factor” (Merton, 1980, p. 324). 

For a statistic that many academics denigrate as “economically meaningless,” 
beta is still “intensively employed” by financial professionals  (Levy, 2012, p. 5). 
The “concept of beta risk” remains “the single most important contribution of 
academic researchers to the financial community” (Chan and Lakonishok, 1993, 
p. 51). “The CAPM is widely viewed as one of the two or three major 
contributions of academic research to financial managers during the postwar era” 
(Jagannathan and Wang, 1996, p. 4). 

Throughout the 1970s and 1980s, financial scholarship identified significant 
departures from beta-driven asset pricing models.  Small firms (Banz, 1981; 
Reinganum, 1981) and firms with a high book-to-market ratio (Basu, 1977; 
Reinganum, 1981) offered returns exceeding those predicted by beta. Fama and 
French (1992) declared that “the relation between β and average return… is weak, 
perhaps nonexistent” (p. 464). The resulting Fama-French three-factor model of 
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asset pricing according to market risk, size, and value quickly established a new, 
dominant paradigm (Daniel and Titman, 1997; Fama and French, 1995; Griffin, 
2002). 

A related body of scholarship associated with Carhart (1997) identified 
momentum in short-run stock prices (Grinblatt, Titman and Wermers, 1995; 
Jegadeesh and Titman, 1993). Because it cannot be explained by beta or by Fama 
and French’s size and value factors (Chan et al., 1996), momentum represents a 
distinct factor within the comprehensive Fama-French-Carhart four-factor model 
(Avramov and Chordia, 2006; Fama and French, 1996; Fama and French, 2008; 
Fama and French, 2012; Liew and Vassalou, 2000; Rath and Durand, 2015). Size, 
value, and momentum are the marquee attractions in the “zoo of… factors” that 
defines contemporary finance (Cochrane, 2011, p. 1047). 

4.  THE SUBATOMIC MENAGERIE: FROM THE “FACTOR 
ZOO” TO THE “PARTICLE ZOO” 

The rehabilitation of beta begins with the harmonization of the “factor zoo” 
of mathematical finance with the “particle zoo” of contemporary physics. The 
“particle zoo” is the playful name originally assigned to the particles now 
classified within the Standard Model (Schwartz, 1997). The intrinsic discipline 
governing subatomic particles in physics may help us impose clarifying order on 
a financial literature that often seems to emphasize size, value, and momentum, 
perhaps at the expanse of closer examination of the structure and dynamics of 
capital markets. 

“In physics and in other natural sciences, it is often a successful strategy to 
analyze the behavior of a system by studying the smallest components of that 
system” (Preis and Stanley, 2010, p. 432). If examined “on steadily decreasing 
time and length scales,” that system may exhibit complex properties and 
behaviors that cannot be explained by its smallest components, but rather by their 
interactions (ibid.). “At each stage” of any scientific progression, increasing 
complexity demands “new laws, concepts, and generalizations” (Anderson, 1972, 
p. 393). 

The Standard Model of particle physics provides a fruitful analogy for the 
subcomponents of financial risk (Mann, 2010; Oerter, 2006). Quantum 
chromodynamics focuses on a subset of fermions, six quarks in three matched 
pairs of quark families (Weiner, 2010): 
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Table 1 
Generations of quarks and leptons in the Standard Model of particle physics 

Quarks First generation Second 
generation Third generation 

Up-type quarks with a +

 

2
3 e charge Up Charm Top (truth) 

Down-type quarks with a –

 

1
3 e  charge Down Strange Bottom (beauty) 

Leptons 
Electron Muon Tau 

Electron neutrino muon neutrino tau neutrino 

Source: Own elaboration. 

Baryons are subatomic particles consisting of three quarks.  The most 
familiar baryons are protons and neutrons, which together account for most of 
the mass of the universe (Munowitz, 2005, p. 35). These two baryons are 
comprised of different combinations of up and down quarks: 

proton 2u + 1d =  +1e 
neutron 1u + 2d =    0e 

Since the up quark has a charge of +

 

2
3  and the down quark has a charge of –

 

1
3 , 

these combinations account for proton’s +1 and the neutron’s neutral charge 
(Gell-Mann, 1994, p. 181). 

 “Flavors” of beta do not necessarily correspond, mathematically or otherwise, 
to the six flavors of quarks. It suffices to observe that the energy levels 
characterizing different aspects of physics can be analogized to the diverse scales 
at which economics operates, from households to firms and capital markets and 
ultimately to money supply and foreign exchange. 

By the same token, certain aspects of the Standard Model, especially quantum 
chromodynamics, invite fruitful analogies. In particle physics, color confinement 
under ordinary, low-energy conditions confines quarks within hadrons such as 
baryons and mesons and prevents quarks from being directly observed in isolation 
(Wilson, 1974). Quarks of each flavor exhibit “color” - arbitrarily defined as red, 
blue, and green, according to the constituents of visible light. 

Color SU(3) is the gauge symmetry that governs color change and interaction 
among quarks under quantum chromodynamics (Brower, Mathur and Tan, 2000; 
Icke, 1995; Polchinski and Strassler, 2002). Absent violations of Color SU(3)        
-Aaij et al. (2015), for instance, found evidence of pentaquark states with a 
confidence of 15σ, in contrast with the failure of Amsler et al. (2008: pp. 1019-
1022) to detect particles consisting of five quarks -baryons consist of exactly 
three quarks satisfying the chromodynamic requirement of one red, one blue, and 
one green quark.  In an econophysical representation of finance analogous to the 
Standard Model, the three subcomponents of beta should not only correspond to 
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the three generations of quarks, but also combine in a fashion similar to quantum 
chromodynamics to form the full measure of conventional beta. 

Inspired by the Standard Model’s classification of quarks (and leptons) within 
three generations of matter and by quantum chromodynamics’ description of 
three-way interaction among red, blue, and green colors of quarks, Econophysics 
and Capital Asset Pricing divided beta as the fundamental unit of systematic risk 
into three distinct groups, or “generations”: 

1. Up and down on either side of mean returns (Ang et al., 2006, pp. 1199-
1200; Estrada, 2002, p. 368; Estrada, 2007, pp. 171, 174; Tsai et al., 2014, 
p. 441) 

2. Relative volatility (σ) and correlation (ρ) between asset-specific and 
market-wide returns (Leibowitz et al., 2010, p. 14; Miller, 2014, pp. 198, 
213, 292; Pratt and Grabowski, 2010, pp. 205-206, 214) 

3. “Bad” cash-flow beta versus “good” discount-rate beta (Campbell and 
Vuolteenaho, 2004) 

These generations of “baryonic” beta correspond to the Standard Model’s 
generations of quarks (Harari and Stanford Linear Accelerator Center, 1997): 

Table 2 
Three generations of quarks alongside three generations of “baryonic” beta 

Generation Quark Beta Mathematical relationship to conventional beta 

First 

Up Upside 

 

β+ =
cov+(a,m)
cov+(m,m)

; β− =
cov−(a,m)
cov−(m,m)

β =
cov+(a,m) + cov−(a,m)

cov+(m,m) + cov−(m,m)
=

cov(a,m)
cov(m,m)

 

Down Downside 

Second 
Charm Correlation 

tightening 

 

β =
σ a

σm

ρ(a,m) =
σ a

σm

⋅
cov(a,m)

σ aσm  Strange Relative 
volatility 

Third 
Top (truth) Discount-

rate (good) 

 

β = βCF + βDR  Bottom 
(beauty) 

Cash-flow 
(bad) 

Source: Own elaboration. 

The Standard Model isolates six distinct “flavors” of up- and down-type quarks 
within three generations of matter. It describes the interaction of quarks according 
to the three-way Color SU(3) gauge symmetry of quantum chromodynamics.  
Likewise, by describing three distinct ways to bifurcate beta -upside and downside 
beta on either side of mean returns, the relative volatility and correlation tightening 
components of beta, and the intertemporally dynamic distinction between “bad” 
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cash-flow beta and “good” discount-rate beta - “baryonic beta dynamics” 
facilitates more nuanced, comprehensive evaluation of systematic risk in portfolio 
theory and asset pricing. Indeed, the representation of SU(3) as a Lie group 
(Curtright and Zachos, 2015; Rosen, 1971) raises the tantalizing prospect that 
discrete components of financial risk might be resolved by Lie algebra (Erdman 
and Wilson, 2006; Hall, 2015; Helgason 1978). 

5.  BARYONIC BETA DYNAMICS AND BEYOND 
“These are only hints and guesses, / Hints followed by guesses; and the rest / 

Is… discipline, thought and action” (Eliot, 1971, p. 44). Baryonic beta dynamics 
imposes order on the factor zoo of contemporary finance.  According to this 
econophysical model, systematic risk consists of coherent “subatomic” 
components that interact in quantifiable and perhaps even predictable ways.  Far 
from “displac[ing] economics,” physics supplies principles and analogies that 
“help economists find deeper understandings” of finance and related fields as 
“complex systems” (Richmond et al., 2013, p. 17). 

If only through “qualitative analogy,” physical models “have also helped to 
develop new theories to explain [existing] observations in Economics” 
(Chakraborti et al., 2011, p. 992). More generally, risk measures with clear 
physical interpretations provide readily understandable, easily quantifiable, and 
statistically verifiable support or contradiction for intuitions about risk 
management and portfolio design. 

Baryonic beta dynamics provides persuasive, perhaps even compelling, 
explanations for several of the most significant anomalies in mathematical 
finance.  Splitting beta into its constituent parts helps explain abnormal returns 
on small-cap and value stocks (Morelli, 2007, p. 263; Xu and Pettit, 2014, p. 69; 
Zhang, 2005, p. 67), the low-volatility anomaly (Leibowitz et al., 2010, pp. 235, 
265; Ang et al., 2006, p. 1228; Baker et al., 2011, p. 43), and the equity 
premium puzzle (Campbell and Cochrane, 1999, pp. 240, 248; Mehra, 2003, p. 
61; Mehra and Prescott, 2003, p. 917). 

In addition, splitting the atom of systematic risk offers insight into short-term 
price continuation anomalies such as momentum and post-earnings 
announcement drift (Bernard, 1993; Bernard and Thomas, 1989; Bernard and 
Thomas, 1990; Savor and Wilson, 2016). Careful parsing of cash-flow and 
discount-rate effects opens the door to understanding capital market interactions 
with the macroeconomy (Campbell and Vuolteenaho, 2004; Flannery and 
Protopapadakis, 2002; McQueen and Roley, 1993). The econophysics of baryonic 
beta also invites more explicitly behavioral accounts of abnormal markets and 
irrational investors, such as prospect theory (Kahneman and Tversky, 1979; 
Tversky and Kahneman, 1992), SP/A theory (Lopes, 1987), and behavioral 
portfolio theory (Shefrin and Statman, 2000). 
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These departures from informational efficiency and rational pricing arise from 
interactions among beta’s baryonic subcomponents. Systematic risk behaves 
differently on the downside of expected return relative to the upside (Chen, 2017, 
pp. 31-45). Downside risk reveals the greater sensitivity of smaller, more agent-
specific asset classes, such as small-cap stocks, to comovement with capital 
markets or the real economy. “[J]ust about every known stock market pattern is 
stronger for small firms than for large firms” (Loughran and Ritter, 2000, p. 363). 
“[H]igher average returns” from “considerably higher cash-flow betas” relative to 
macroeconomic discount-rate effects (Campbell and Vuolteenaho, 2004, p. 1261) 
explain the superlative performance of value and small-cap stocks within the 
three-factor model of Fama and French (1995, 1996). 

Ultimately, the derivation of the baryonic model of finance from the Standard 
Model of particle physics expands the epistemic toolkit available to economics. 
“Nel mezzo del cammin di nostra vita / mi ritrovai per una selva oscura”: 
Confounded by abnormal markets and irrational investor behavior, contemporary 
finance sometimes finds itself “[i]n dark woods, the right road lost” in “woods… 
so tangled and rough” (Pinksy, 1994, pp. 2-3, canto i, lines 1-2). “E quindi 
uscimmo riveder le stelle”: The confluence of physics and economics marks the 
place “[w]here we came forth, and once more saw the stars” (ibid., pp. 372-373, 
canto xxxivi, line 140). 
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