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ABSTRACT 
Spatial and spatio-temporal data are not new. They have always been here. However, until fairly recently the 
scientific community had at its disposal neither the theory nor the technology to deal with them. It was thus unable to 
take advantage of the spatial or spatio-temporal dependencies existing in a large number of phenomena when it 
comes to estimating, predicting, mapping, experimental designing, etc. This article first addresses the adverse 
consequences of failing to account for such dependencies. Then, it traces the route travelled by geostatistics from its 
beginnings to the present day, providing the reader with the rudiments of kriging, the technique geostatistics uses for 
inferential purposes. However, this article is not only an overview. It poses a number of criticisms, alternatives, open 
questions and future avenues of research in its different phases: spatial-only, spatio-temporal and functional. Initially 
having arisen in the Earth sciences, and having been applied in many natural sciences, in recent years geostatistics has 
stepped into the sphere of social sciences and particularly applied economy.     
Keywords: Geostatistics, Kriging, Space, Space-Time, Functional Kriging.  

Geoestadística:¿De dónde vienes y a dónde vas?  

RESUMEN 
Los datos espaciales o espacio-temporales no son nuevos. Han estado siempre ahí. Sin embargo, hasta hace pocos 
años no se ha desarrollado la teoría y la tecnología para que la comunidad científica pueda trabajar con ellos y sacar 
provecho de las dependencias espaciales o espacio-temporales que presentan un buen número de fenómenos de la 
realidad a la hora de llevar a cabo tareas de estimación, predicción, mapeo, diseño experimental, etc. Este artículo 
pone de manifiesto, primeramente, las perversas consecuencias que se derivan de ignorar tales dependencias. A 
continuación, recorre el camino seguido por la geostadística desde sus inicios hasta el presente, proporcionando al 
lector los rudimentos básicos del kriging, la técnica que usa la geoestadística para llevar a cabo labores inferenciales. 
Sin embargo, este artículo no es sólo una visión panorámica de la evolución de la geoestadística hasta nuestros días. 
También plantea un buen número de críticas, alternativas, cuestiones que todavía permanecen abiertas y futuras 
líneas de investigación en cada uno de los estadios de la disciplina: espacial, espacio-temporal y funcional. Nacida en 
el ámbito de las ciencias de la Tierra y aplicada en  muchas de las ciencias de la naturaleza, en la actualidad la 
geoestadística ha encaminado sus pasos hacia las ciencias sociales, y en particular hacia la economía aplicada.  
Palabras Clave: Geoestadística, kriging, espacio, espacio-tiempo, kriging funcional. 
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1. SPATIAL DATA AND SPATIAL STATISTICS 
Spatial data are not new; they have always been here. The first 

manifestations of statistics for spatial data arose in the form of maps. A famous 
example is that of Halley (1686), who superimposed onto a map of land forms 
directions of trade winds and monsoons between and near the tropics, and 
attempted to assign a physical cause to this phenomenon. However, although 
data that are spatial in nature have been frequently used in the literature, the 
spatial aspects of empirical information have not been taken into account by the 
scientific community until recent times.  

Spatial data arise in a myriad of fields and applications1 and, consequently, 
there is also a myriad of spatial data types, structures and scenarios. Thus, an 
exhaustive classification of spatial data is a difficult challenge, and this is why 
the scientific community have opted to embrace the general, simple and useful 
classification of spatial data provided by Cressie (1993, pp. 8–13). That 
classification is based on the nature of the spatial domain under study, 
according to which the spatial data can be geostatistical data, lattice data or 
point patterns. 

Following Cressie (1993, 2015), let d∈s  be a generic location in a d-
dimensional Euclidean space and ( ){ }: dZ ∈s s   a spatial random function 
(RF), Z denoting the attribute of interest. Geostatistical data arise when the 
domain under study is a fixed set D that is continuous. That is, (i) ( )Z s can be 
observed at any point of the domain (continuous); and (ii) the points in D are 
non-stochastic (fixed, D is the same for all the realizations of the spatial RF). 
From (i) it is clear that geostatistical data are identified with spatial data with 
continuous variation (the spatial process is indexed over a continuous space).  

Lattice data arise when: (i) The domain under study D is discrete, that is, 
( )Z s can be observed in a number of fixed locations that can be enumerated. 

These locations can be points or regions, but they are usually ZIP codes, census 
tracks, neighborhoods, provinces, etc., and in most cases the data are spatially 
aggregated over these areal regions. Although these regions can be regularly 
shaped, their shape is usually irregular, and this, together with the spatially 
aggregated nature of the data, is why lattice data are also called regional data. 
And (ii) the locations in D are non-stochastic.  Of course, a core concept in 

1 Mining, Petroleum Industry, Geology, Oceanography, Meteorology, Soil Cartography, Soil 
Science, Hydrology and Biohydrology, Forestry, Ecology, Geometallurgy, Plant Pathology, 
Landscape Ecology, Agriculture, Epidemiology, Entomology, Environmental Sciences, 
Contaminated Soil Remediation, Public Health, Medical Geography, Criminology, Commerce, 
Military Planning, Real Estate Pricing, Applied Economics and Developing of Spatial Networks, 
to mention only some of them. 
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lattice data analysis is neighborhood. Unlike geostatistical data, lattice data can 
be exhaustively observed and in this case, prediction makes no sense. However, 
smoothing and clustering become particularly important when dealing with this 
type of spatial data.  

Unlike with geostatistical and lattice data, in point pattern data the domain is 
not fixed, but random (discrete or continuous). Point patterns arise when the 
attribute under study is the location of events (observations). Thus, the domain 
is random and the observation points do not depend on the researcher. The main 
goal of point pattern analysis is to determine whether the location of events 
tends to exhibit a systematic pattern over the area under study or they are 
randomly distributed. More specifically, we are interested in analyzing whether 
the location of events is completely spatially random (the location where events 
occur is not affected by the location of other events), uniform or regular (every 
point is as far from all of its neighbors as possible) or clustered or aggregated 
(the location of events is concentrated in clusters). Other interesting questions in 
point pattern analysis include: how does the intensity of point patterns vary over 
an area? Over what spatial scales do patterns exist?  

The above refers to merely spatial data, but in recent years spatio-temporal 
data analysis has become a promising research area in a wide variety of 
scientific disciplines. In the spatio-temporal context, the observed data are 
viewed as partial realizations of a spatio-temporal RF ( ){ }, : ,dZ t t T∈ ∈s s 

which spreads out in space and evolves in time. Thus, spatio-temporal data 
simultaneously capture spatial and temporal aspects of data.  

According to Montero et al. (2015), examples of geostatistical data include 
the concentrations of air pollution in a city, precipitation or air temperature 
values in a country, etc. At least theoretically, the concentrations of a specific 
pollutant could be measured at any location of the city (the same can be said for 
measurements of precipitations or air temperatures across a country). However, 
in practice, an exhaustive observation of the spatial process is not possible and 
so the spatial process is observed at a set of locations (for example, in the case 
of air pollution, at the points where the monitoring stations are located). Then, 
based on these observed values, geostatistical analysis reproduces the behavior 
of the spatial process across the entire domain of interest. Sometimes the goal is 
not so ambitious; instead, the objective is limited to prediction at one or a few 
non-observed points or the estimation of an average value over small areas, or 
over the whole area under study. Geostatistics takes advantage of the spatial (or 
spatio-temporal) dependencies existing in the data, which are captured by the 
basic tool in geostatistics, the semivariogram, and uses this information to 
achieve the above goals.  
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Some examples of lattice data include the unemployment rate by states, 
crime data by counties, agricultural yields in plots, average housing prices by 
provinces, etc.  Examples of point patterns are the location of fires in an area, 
the location of trees in a forest or the location of nests in a breeding colony of 
birds, etc. 

2. THE NEED FOR GEOSTATISTICS 
Classical statistics is based on the independence of the observed values, 

which are considered as independent realizations of the same random variable. 
Data used in classical statistics are typically summarized by means, medians, 
variance, skewness, excess of kurtosis, box-plots, etc. However, when data are 
spatial in nature, the hypothesis of independence is not really acceptable and the 
First Law of Geography, “everything is related to everything else, but near 
things are more related than distant things” (Tobler, 1970) applies.  In this case, 
the summary must include the empirical semivariogram (or alternatively the 
spatial covariance), which is the instrument geostatistics uses to capture the 
spatial correlation existing in the data. In addition, the spatial location of the 
observed data becomes particularly relevant.  

Ignoring the spatial dependencies in the data and using classical statistical 
methods with spatial data has adverse consequences for estimation, prediction 
and experimental design. By way of example, we focus on estimation in the 
spatial case but the consequences of using classical statistics with spatio-
temporal data are the same in the cases of prediction and experimental design 
(see Cressie, 1993). 

Let ( ) ( ) ( ){ }1 2, , , nZ Z Zs s s  be n identically distributed observations measured 
at spatial locations{ }1 2, , , ns s s

. More specifically, suppose that they follow a 
Gaussian distribution with unknown mean, µ , and known variance, 2

0σ , and that 
covariances between the observed locations are positive and diminish with the 
distance h between them according to the covariance function:   

( )
3

2
0 3

3 11
2 110 2 110

h hC h σ
  

= − −  
  

. Suppose that our aim is to estimate the 

unknown mean and that we ignore the existing spatial correlation. In such a 
situation, the sample mean, Z , would be the estimator for µ , so that ( )E Z µ=  

and ( ) 2
0V Z nσ= .  But, in the presence of spatial correlation, although Z

remains unbiased it no longer has a variance of 2
0 nσ , but rather 

( )
2 3
0

3

2 3 11 1
2 110 2 110

n

i j

h hV Z
n n
σ

<

   
= + − −       

∑ (see calculations in Montero et al., 
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2015), which is greater than 2
0 nσ in the typical case of positive correlation. 

Therefore, the use of the classical estimator of µ when dealing with spatial data 
results in the underestimation of ( )V Z , which has unfortunate consequences for 
inference aboutµ : (i) The classical confidence intervals for a specific 
confidence level will be narrower than they really are; or, in other words, the 
confidence level of classical intervals is greater than it really is. When testing, 
the p-values will be larger than they really are, which will lead to undesirable 
rejections of the null hypothesis; in addition, the power of the tests will be 
overstated (examples can be seen in Cressie, 1993, 2015; Shabenberger and 
Gotway, 2005; Montero et al., 2015). 

Summarizing, classical statistics has important limitations when dealing with 
spatial (or spatio-temporal) data, an issue which is becoming ever more 
common in empirical research (especially, in recent times, in the field of applied 
economics), and new instruments are needed to overcome these limitations. 
Geostatistics is one of the disciplines that provides these instruments (spatial 
econometrics and local modeling are other disciplines dealing with the spatial, 
or spatio-temporal, aspects of data).  

3. THE ORIGINS: SPATIAL-ONLY GEOSTATISTICS 
3.1. The univariate case: Kriging2 

Following Chilès and Delfiner (1999), geostatistics aims at providing 
quantitative descriptions of variables distributed in space or in time and space, 
and provides the practitioners with a methodology to quantify spatial (or spatio-
temporal) uncertainty. The term “geostatistics” was first introduced by Matheron 
(1962). As stated in Chilès and Delfiner (1999), the term “statistics” comes into 
play because probability distributions are the meaningful way to represent the 
range of possible values of a quantity of interest. In addition, a statistical model is 
well suited to the apparent randomness of spatial variations. The prefix “geo” 
emphasizes the spatial aspect of the problem. Originally, it referred to the domain 
of the Earth Sciences but, as seen in section 1, over time the number of domains 
geostatistics has been applied to has increased enormously. Matheron also coined 
the term “regionalized variable” to designate a numerical function depending on a 
continuous spatial index and combining high irregularity of detail with spatial 
correlation. Therefore, geostatistics can also be defined as the application of 
probabilistic methods to regionalized variables. In other words, geostatistics deals 
with regionalized phenomena, which are those that extend across space and 
present an organization or structure. By space it is understood that we are 

2 We focus on linear kriging. Nonlinear kriging procedures are also of interest, but their analysis 
goes beyond the scope of this article. 
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referring to geographical space; however, in recent research, economic, social, 
and other more sophisticated types of space are considered (for example, in 
Fernández-Avilés et al., 2012, and Fernández-Avilés and Montero, 2016, 
economic and financial spaces have been constructed). 

The instrument geostatistics uses to predict (in the sense of interpolation) the 
value of a random value in an unobserved location is called kriging, in honor of 
Professor and Mining Engineer, Daniel Gerhardus Krige (who passed away on 
2nd March 2013 at the age of 93). The seminal papers by Krige, published in 
the Journal of Chemical, Metallurgical and Mining Society of South Africa, led 
to the celebrated research by Georges Matheron and his team in France, on 
regionalized variables; Matheron named the new method of linear estimation of 
the regionalized variables using a spatial model “Kriging”, in recognition of the 
distinguished pioneering work of Krige.  

Let ( ) ( ) ( ){ }1 2, , , nZ Z Zs s s
 be n observations measured at spatial locations

{ }1 2, , , ns s s
. Let 0s be an unobserved location where we want to predict ( )0Z s . 

The kriging predictor is 0
1

ˆ ( ) ( )
n

i i
i

Z Zλ
=

=∑s s , where , 1, , ,i i nλ =   are the kriging 

weights obtained by imposing on the prediction error the classical conditions of 
unbiasedness and minimum variance. We may often be interested in block 
prediction; that is, our aim is to predict the average value of the RF being 
studied in a specific area, a block, with the observation support being points or 
also blocks. However, the bases of the procedure are the same as for kriging 
based on point observations.  

How does kriging estimate the weights used to obtain optimal predictions at 
unobserved locations? Roughly speaking, the procedure involves two stages. 
First, the structure of the spatial dependence or correlation present in the 
realization observed must be represented in a function. The fact that it accounts 
for this structure is the main advantage of using kriging over other spatial 
interpolation techniques (inverse distance method, splines and polynomial 
regression, among others). Another important advantage is that kriging makes it 
possible to quantify how accurate the predictions are using the prediction error 
variance and can yield a map of the standard deviation of the prediction errors. 
This stage is known in the geostatistics literature as structural analysis and is a 
key issue in the subsequent process of optimal (kriging) prediction, as the 
success of the kriging methods is based on the functions yielding information 
about the spatial dependence detected. 

The functions referred to above are covariance functions (also called 
covariograms) and semivariograms. They must meet a series of requisites (see 
Montero et al., 2015 for details), otherwise, they may produce nonsensical results. 
However, in practice, the empirical covariance functions and semivariograms 
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constructed from the observed realizations do not usually satisfy such requisites. 
For this reason, one of the theoretical models (also called the valid models) that 
do comply must be fitted to it (Chilès and Delfiner, 1999, present a long list of 
such models). 

As stated in Webster and Oliver (2001, p. 128), choosing models and fitting 
them to the empirical covariance function or semivariogram plot, are key and 
arduous tasks that are among the most controversial topics in geostatistics. The 
fitting process can be done (i) by eye (fitting by eye, manual fitting, fitting at first 
glance), using visual and graphical methods, or (ii) using statistical procedures. A 
combination of both is recommended. Manual fitting may seem, initially, like a 
strange tradition but, as stated in Wackernagel (2003, p. 49), it does not generally 
have a particularly relevant impact on how well the semivariogram function fits 
the sequence of points in the empirical semivariogram. What is really crucial is 
the type of continuity assumed for the regionalized variable and the stationarity 
hypothesis associated with the RF. These assumptions have many more 
implications than the way the theoretical function is fitted to the empirical 
counterpart (see Matheron, 1989, for a thorough discussion). Armstrong and 
Wackernagel (1988, pp. 53-4) state that the analytic form of the model does not 
matter very much as long as the major features of the phenomenon are respected. 

Unfortunately, most practitioners use automatic fitting, which rarely 
provides good results. For example, the fitting near the origin is much more 
important than the fitting at large distances from it, because the behavior of the 
semivariogram near the origin indicates the degree of irregularity the RF shows; 
there may be anisotropies, etc. Finally, an understanding of the phenomenon 
under study is very welcome for this purpose, though the introduction of 
auxiliary hypotheses carries with it the risk that kriging loses its optimality. 

The second stage of kriging is the solution of the kriging equations, which 
provides the estimation of the kriging weights and the prediction variance. They 
result from imposing on the prediction error zero expectation and minimum 
variance.  When the RF of interest is second-order stationary (with a constant 
but unknown mean) or intrinsically stationary, the resulting kriging equations 
are called ordinary kriging (OK) equations and are as follows (in terms of the 
semivariogram): 

( ) ( )0
1

1

, 1, ,
,

1

n

j i j i
j

n

i
i

i nλ γ α γ

λ

=

=


− + = − ∀ =


 =

∑

∑

s s s s 

 (1) 

with prediction variance: 
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( ) ( ) ( )( ) ( )2 *
0 0 0 0

1

N

OK i i
i

V Z Zσ λ γ α
=

= − = − +∑σσσσσ      . (2) 

In the above equations, the semivariogram terms ( )γ ⋅  depend only on the 
distance between the pairs of locations and not on their specific location (and on 
the orientation in the case of isotropic kriging), and α is a   Lagrange multiplier. 

However, it is difficult to argue that the RF under study is stationary or 
intrinsically stationary across a large area (or even in small ones). In particular, 
the assumption that the unknown mean of the RF is constant across the domain 
under study is usually not the case in reality. However, given its “simplicity”, OK 
is often overused. In the presence of a spatial drift evolving with different shapes 
across the domain under study, which results in a non-stationary situation, 
alternatives to OK must be used. The traditional alternative is universal kriging 
(UK), which involves a parametric drift on the spatial coordinates operating 
across the domain of interest whose order is predetermined, and uses the 
semivariogram to capture the spatial dependencies in the errors (that is, the 
difference between the observations and the values of the drift at the observed 
locations) instead of in the observed values. The UK equations are as follows: 

0

0

( )

0 0
1 1

( )

0
1

( ) ( ) ( ), 1,..., ( )

( ) ( ), 1,...,

n p

j e i j h h i e i
j h

n

i h i h
i

f i n

f f h p

λ γ α γ

λ

= =

=


− + = − ∀ =



 = ∀ =

∑ ∑

∑

s

s

s s s s s s

s s

. (3) 

Note that UK does not take into account all the observations but a number of 

them, 0( )n s , around the prediction point. Note also that 
1

( )
p

h h i
h

fα
=
∑ s represents the 

local drift in the surroundings of is , where { }( ), 1,...,hf h p=s  are p known 
linearly independent parametric functions (monomials of the spatial coordinates; 
given the polynomial character of the drift, 1 0( ) 1f =s ), hα  are constant 
coefficients obtained with a moving neighborhood which can differ (and in reality 
does differ) from one neighborhood to another, and p is the number of terms 
employed in the approximation to the drift. It is important to highlight that the 
local drift is not explicitly estimated; It is also very important to note that the 
semivariogram terms, eγ , are the residual semivariogram terms and not observed 
semivariogram terms, which constitutes a severe limitation of the procedure. The 
prediction variance is also given in terms of ( )h if s and eγ : 

( )
0( )

0 0 0 0
1 1

ˆ ( ) ( ) ( ) ( )
n s p

i e i h h
i h

V Z Z fλ γ α
= =

− = − +∑ ∑s s s s s . (4) 

Estudios de Economía Aplicada, 2018: 81-106   Vol. 36-1 



GEOSTATISTICS: UNDE VENIS ET QUO VADIS? 89 

Since residuals are not observable and consequently their empirical 
semivariogram cannot be constructed, some “solutions” to the e problemγ − can 
be found in the geostatistical literature. The most popular ones are: (i) to assume 
that Z eγ γ≈  in a small neighborhood of the prediction site, given that in this 
case the drift cannot significantly change. (ii) Iterated universal kriging (IUK), 
which consists of applying UK with the semivariogram of the data (thus 
assuming that Z eγ γ≈ ) and obtaining the initial weights to estimate the drift and 
the residuals. Using these residuals as a basis, a valid semivariogram is fitted to 
its empirical counterpart and then the UK equations are computed and new 
weights for the drift are obtained. This process is repeated iteratively until 
convergence. (iii) Kriging with external drift (KED) instead of using monomials 
on the spatial coordinates, the drift is defined explicitly by using auxiliary 
covariates that are known at the same points where the observed RF has been 
observed as well as at the prediction point (exhaustive information; in a 
heterotopic situation, cokriging is recommended). (iv) Residual kriging (RK), 
also known as regression kriging or kriging after detrending, which assumes 
that the shape of the drift is known (based on previous knowledge). In RK, the 
drift is first externally estimated; second, the residuals, supposedly stationary, 
are obtained by differences; third, a theoretical semivariogram is fitted to the 
empirical semivariogram of the residuals; fourth, OK of the residuals is 
performed, assuming a zero mean for the residuals (the situation where the 
mean is constant and known is called simple kriging); and finally, the prediction 
is obtained by adding the estimates of the drift and the residual at the estimation 
point. (v) Kriging with total drift (KTD), which can be considered an extension 
of KED whereby the coordinates are included in the set of auxiliary covariates 
(see Montero and Fernández-Avilés, 2017a). However, the above approaches 
are also subject to theoretical objections. Other alternatives frequently used in 
practice are the median polish kriging and iterative RK. The algorithms for the 
above alternatives can be seen in Montero et al. (2015) and the references 
therein.  

As pointed out in Hengl et al. (2003), it is important to emphasize that KU, 
KR and KDE (and also KTD) describe practically the same generic method and 
should provide the same predictions and prediction errors if the inputs that feed 
them are the same. They only differ in the methodological steps. In KED, the 
semivariogram matrix is extended with auxiliary covariates, so that the 
universality conditions are integrated into the kriging equations. The challenge 
is to obtain a satisfactory residual semivariogram in the presence of a drift. In 
RK, the difficulty is to obtain unbiased regression coefficients in the presence of 
spatially autocorrelated residuals. However, RK has the advantage that it can be 
easily combined with stratification, generalized additive models, regression trees, 
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etc. Another advantage is the separate estimation of the drift and the residual 
component, whereas in UK and KED, both are estimated simultaneously. 

A word of caution: KED (like UK) is more computation intensive than RK, 
which is why it is common in research (as well as in software packages) to 
make different assumptions and skip some computational steps that lead to RK. 
Obviously, these short cuts might be attractive for practical applications, but are 
sub-optimal statistically speaking. 

In short, the presence of a non-constant drift results in problems that have 
yet to be resolved. It should be highlighted that since the drift usually has a 
marked local character that is difficult to capture through global parametric 
specifications, kriging with non-parametrically specified drift (internal, external 
or total) constitutes an interesting research avenue. This way, the local character 
of the drift can be captured by a global drift. In my opinion, the non-parametric 
spatial drifts obtained by using penalized B-splines are a promising approach. 
Moreover, I recommend the transformation of the drift model into a mixed model, 
which allows for the simultaneous estimation of the drift parameters and the 
smoothness coefficient (see Montero et al., 2017b, for details on this approach in 
the field of spatial econometrics). It is of note that in the non-stationary cases, UK 
is rarely acceptable since it introduces an a priori parametric specification that is 
difficult to justify in almost all cases. The non-parametric drifts overcome this 
limitation. It is also very important to remark that in the prediction of the drift and 
residual components, the attention must be focused on the former because the 
drift tends to account for 90-95% of the total prediction value. 

Finally, a word on the estimation of the (constant) mean across an area of 
interest. As outlined in section 2, in the presence of spatial dependencies, the 
traditional estimator of such a mean should be substituted with the kriging-of-the-
mean estimator (see Montero et al., 2015, for details). Otherwise, the variance of 
the estimator will be underestimated, with adverse inferential consequences. 

3.2. The multivariate extension: Cokriging 

Cokriging is the name given to the multivariate version of kriging. Cokriging 
not only uses the information on the RF of interest but also information on other 
auxiliary RFs strongly correlated with it.  Thus, it constitutes a good alternative to 
univariate kriging. As stated in Montero et al. (2009), cokriging is a technique 
designed to benefit from “borrowing power” in cases where the RF of interest is 
scarce and/or expensive to collect, but there are other related and more abundant 
RFs that can provide additional information useful for estimating the spatial RF of 
direct interest. By way of example, if we are interested in predicting the price of a 
commercial property in a specific location, we can perform a kriging prediction 
based on the prices of commercial properties in the surrounding area of the 
location of interest. Unfortunately, however, information on the price of 
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commercial properties is scarce and predictions based on it would be unreliable. 
Cokriging allows the use of additional RFs such as housing prices, office prices, 
etc. (for which abundant information is at our disposal) which potentially provide 
valuable information to compensate for the relative scarcity of commercial 
property transactions. Cokriging thus incorporates the optimal spatial prediction 
capabilities found in kriging, as well as the ability to exploit the commonalities in 
spatial structure shared by the main and the auxiliary RFs. Cokriging requires 
homotopy (the main and the auxiliary variables have been observed at the same 
locations) or partial heterotopy (there are only a number of sites where we have 
information on both the main and the auxiliary RFs). In the case of total 
heterotopy, cokriging cannot be used (see Wackernagel, 2003). Note that there is 
an important difference with the kriging methods using secondary information 
(such as KED, for example), because these methods require exhaustive secondary 
information (meaning that the secondary information is available at all primary 
data locations and at all locations where the main RF is going to be predicted), 
while cokriging algorithms allow for non-exhaustive secondary information. 
Another relevant difference is the approach: whereas cokriging tries to “enlarge” 
the sample observed via auxiliary RFs correlated with the RF of interest, 
alternatives like kriging with KED or RK, for example, try to “explain” the 
behavior of the main RF, or to “clean” it from the impact of factors other than the 
spatial dependencies in the RF itself. 

Let ( )1 2, ,..., mZ Z Z ′=Z be a vector of correlated RFs. If we aim to predict the 
value of 1Z at a specific location 0s , the cokriging predictor is given by a weighted 
linear combination of the data values , 1, ,jZ j m= 

, located at sampled points 

in the neighborhood of 0s : 

1 0
1 1

ˆ ( ) ( )
jnm

j j
j

j

Z Zα α
α

λ
= =

=∑∑s s . (5) 

The weights j
αλ , jn,,1=α , mj ,,1= , as is the case for kriging, are 

calculated to ensure that the estimator is optimal, in the sense that it is unbiased 
and minimizes the error-variance (see details, for example, in Wackernagel, 
2003). 

The extension of the kriging predictor to the cokriging case is not a problem. 
The real problem is that the multivariate extension of kriging requires not only 
direct- but also cross-semivariograms to capture the pattern of spatial 
dependencies existing within the RFs and between them. In other words, 
cokriging requires a model of the coregionalization matrix that has an acceptable 
mathematical fit to the empirical cross-semivariogram matrix. The selection of 
this model is crucial in multivariate geostatistics; however, it is not an easy task 
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(in fact it is a challenge that goes beyond the scope of this article), and this is 
one of the reasons (maybe the main reason) why cokriging is not often used (see 
Goovaerts, 1997, for basic details on the coregionalization model). In general, 
with m  RFs, m  direct semivariograms and ( )1m m× −  cross-semivariograms 
must be estimated to guarantee positive definiteness. 

In addition, if the appropriate model of coregionalization has been obtained 
(which is practically impossible given that traditional coregionalized models 
ignore the nonlinear dependencies between RFs, see Leuangthong and 
Deutsch, 2003), the cokriging equations (whatever the type: simple, ordinary, 
universal…) are so big that when dealing with large databases the “big n 
problem” arises and the computational burden becomes prohibitive. By way of 
example, in the case of ordinary cokriging (a simple case) and only one auxiliary 
RF, the system of cokriging equations is as follows: 

1
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1 1
1
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1
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
+ − + = − ∀ = ∀ =

 = = =  = 

∑

∑

∑

s s

s s s s  (6) 

where , 1,2j jω = , are Lagrange multipliers corresponding to the constraints 
needed to guarantee the non-bias condition of the cokriging estimator. Note 
that, in the above case, where 2m = , when 1 2 500n n N= = = , the number of 
cokriging equations is ( )2 1 2004m N + = . In the case of a greater number of 
observations, the number of resulting equations would increase considerably. 

In conclusion, cokriging is tedious due to (i) the simultaneous modeling of a 
large number of direct- and cross-semivariograms; although the linear model of 
coregionalization guarantees the positive definiteness of matrices, the restrictions 
imposed on it usually result in poor semivariogram fitting which deprives 
cokriging of some of its possible advantages over kriging; and (ii) the “big n 
problem” when dealing with massive databases. This is the reason why a number 
of alternatives based on the reduction of the dimensionality of the problem and 
the kriging of the orthogonal factors have been proposed and frequently used. 
They include: (i) Finding the principal component which captures the highest 
quantity of the variance of the auxiliary variables involved in the problem and 
use it as the only auxiliary variable in cokriging (see Martinez-Martinez et al., 
2008); (ii) The transformation of the spatially cross-correlated variables into a 
set of orthogonal factors which can be separately estimated using univariate 
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techniques; eventually, the results can be back-transformed into the original 
data space (see Wackernagel, 2003, for example). This approach includes the 
Stepwise Conditional Transformation (SCT) and the Min/Max Autocorrelation 
Factors (MAF) procedure. With SCT, each variable is transformed sequentially 
and conditionally to previous variables into an independent multivariate Gaussian 
distribution. Since each transformed variable is independent, they may be 
simulated separately and then back-transformed to re-impose their multivariate 
relationships. This approach produces normally distributed uncorrelated scores at 
zero lag distance (although it suffers from ordering issues associated with the 
transformation sequence of variables) (see Leuangthong and Deutsch, 2003, for 
details). MAF allows the creation of a set of factors that are uncorrelated at two 
lag separation vectors: the zero vector and a vector that can be freely chosen by 
the user. As in principal component analysis (PCA), each original variable is a 
linear combination of the factors (Rondon, 2012). And (iii) nonlinear principal 
component analysis (NLPCA) (see Linting et al., 2007, for details), which has 
recently been combined with pair-copula models to model the univariate 
nonlinear spatial dependencies once the existing nonlinear multivariate 
dependence between spatial variables has been removed using NLPCA (Musafer 
et al., 2017). 

Independent component analysis (ICA), which tries to find mutually 
independent factors from a linear combination of original variables, is among 
the blind source separation methods that have been frequently used (see 
Hyvarinen et al., 2001, for details). 

In practice, it is extremely difficult to obtain orthogonal factors at all lag 
distances (it could even be said that it is practically impossible), and this has 
resulted in the popularization of methods aimed at obtaining approximately 
orthogonal factors at several lag distances. This approach includes the fitting of 
matrix-valued semivariogram models by simultaneous diagonalization (Xie and 
Myers, 1995), the joint diagonalization of correlation matrices by using Newton 
methods (Joho and Rahbar, 2002), the uniformly weighted exhaustive 
diagonalization with Gauss iterations (U-WEDGE) by Mueller and Ferreira 
(2012) and the Minimum Spatial Cross-correlation (MSC) procedure recently 
introduced by Sohrabian and Tercan (2014), which can be applied even in 
approximate orthogonalization of matrices with non-invertible subspaces. 

As can be seen, again the difficulties in appropriately capturing the direct- 
and cross-spatial dependencies existing in correlated RFs is the main obstacle 
cokriging has to overcome to produce reliable predictions. Something similar 
can be said of the alternative approaches outlined above based on the kriging of 
the orthogonalized factors (MSC-kriging, IC-Kriging, MAF-Kriging, etc.). 
Consequently, open questions remain in the field of multivariate geostatistics 
(for example, which has a more adverse effect on prediction: the limitations of 
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cokriging in capturing the structure of the direct- and cross-dependencies or the 
fact that in the factor approach the factors still exhibit some cross-correlations at 
several lag distances?) and much work is still needed. Therefore, it is no 
surprise that multivariate geostatistical prediction is a hot topic in the literature 
of a large number of scientific disciplines. 

4. RECENT TIMES: SPATIO-TEMPORAL GEOSTATISTICS 
The study of spatio-temporal variability is a relatively new area within 

statistics. There has been a growing realization in the last 15 years that knowing 
where and when data were observed could help enormously in answering the 
substantive questions that precipitated their collection. Cressie (1993), perhaps 
the leading academic in geostatistics, devoted only three pages to the analysis of 
spatio-temporal data. Currently, one can find in the literature summaries of the 
main spatio-temporal modelling techniques and a wide range of practical 
applications. 

The extension of the spatial-only to the spatio-temporal context is a natural 
extension that, at least from the theoretical perspective, should not pose 
substantive problems. In the space-time dimension ( ){ }, , ,Z t D t T∈ ∈s s , with

2D ⊂  and t ⊂  , denotes the spatio-temporal RF whose value is observed at a 
set of n spatio-temporal locations ( ) ( ){ }1 1, , , ,n nZ t Z ts s  . The objective is to predict 

an unknown point value ( )0 0,Z ts  at a non-observed location ( )0 0,ts . For this 

purpose, the spatio-temporal kriging (STK) predictor, ( ) ( )*
0 0

1
, ,

n

i i i
i

Z t Z tλ
=

=∑s s , is 

used. As in the spatial-only case, the weights, iλ , are obtained from the STK 
equations, which depend on the degree of stationarity attributed to the RF that 
supposedly generates the observed realization. For example, in the case of 
second-order or intrinsic stationarity the STK are as follows:  

( ) ( )0 0
1

1

, , , 1, ,
,

1

n

j i j i j i i
i
n

i
i

t t t t i nλ γ α γ

λ

=

=


− − + = − − ∀ =


 =


∑

∑

s s s s 

 (7) 

with prediction (kriging) variance:  

( ) ( )( ) ( )*
0 0 0 0 0 0

1

, , , ,
n

i i i
i

V Z t Z t t tλγ α
=

− = − − +∑s s s s  (8) 

where ( ) ( )( ), , ,i i j jt tγ s s is the semivariogram selected to capture the structure of 

the spatio-temporal dependencies existing in the phenomenon under study (in 
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the second-order case the covariogram ( ) ( )( ), , ,i i j jC t ts s  can also be used) and 

α  is a Lagrange multiplier associated with the non-bias condition. 
As can be seen, there does not appear to be any problem in the extension of 

spatial-only kriging to STK. However, this is not the case in reality. Below, we 
focus on the three main limitations of this extension.  

First, as in the spatial-only case, STK strongly depends on the choice of the 
autocovariance associated with the space-time random field under study. This is 
not a problem in spatial-only geostatistics. It could be said that there is a 
“standard” list of ones that guarantee positive definiteness, covering almost all 
practical situations. However, in the spatio-temporal context such a list is a 
challenge, because the construction of non-separable spatio-temporal covariance 
or semivariogram structures (the space-time interaction is crucial for prediction) 
associated with stationary or non-stationary, isotropic or anisotropic random 
fields, which meet the requirements to be a valid covariance or semivariogram 
model is not an easy task (it is not easy to prove the positive definiteness of a 
spatio-temporal dependence structure). Even the construction and visualization 
of an empirical space-time semivariogram can often be considered a challenging 
task (see example 6.2 in Montero et al., 2015).  The original separable, isotropic 
and stationary covariance models (the metric model by Dimitrakopoulos and 
Luo, 1994; the sum model introduced by Rouhani and Hall, 1989; the product 
model by Rodriguez-Iturbe and Mejia,1974, and De Cesare et al., 1997; the 
product-sum model popularized by De Iaco et al., 2001, 2002a; and the 
integrated product and product-sum models also popularized by De Iaco et al., 
2002b, among other initiatives) imply a number of restrictive conditions that 
makes them infeasible options for use in real applications. Therefore, more 
complex and realistic covariance models were needed to improve predictive 
performance. Thus, it is no surprise that over the past decade a great effort has 
been made to overcome separability, stationarity, isotropy and full symmetry in 
the spatio-temporal structures capturing the spatio-temporal dependencies 
existing in the phenomena under study. Examples of such efforts include the 
models proposed by Cressie and Huang (1999), Gneiting (2002a), Ma (2002, 
2003b, 2005a, 2005b), Stein (2005) and Porcu and Mateu (2007) to take into 
account the space-time interaction; the specifications by Ma (2003a) and 
Gneiting et al. (2007) to overcome full symmetry; the mixture-based Bernstein 
zonally anisotropic covariance functions by Porcu et al. (2006) and the non-
separable models constructed by using quasi-arithmetic functionals (Porcu et 
al., 2009), which go beyond isotropy; and the non-stationary models developed 
by Fuentes and Smith (2001), Chen et al. (2006), Ma (2002, 2003c) and Porcu 
and Mateu (2007), among others. 

Unfortunately, there has been a dramatic decline in research on the topic in 
the present decade and it is now rare to find articles with titles like “A new 
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family of spatio-temporal covariance functions…”, as was common in the past 
decade. The related research has moved on to the field of cross-covariance 
functions in the multivariate space-time context (e.g., Ip and Li, 2016, 2017; 
Bourotte et al., 2016) and to the topic of covariance functions on the sphere 
(Hitczenko and Stein, 2012; Jeong and Jun, 2015; and Porcu et al., 2016, are 
some examples), without having fully resolved a number of relevant issues in 
the univariate field.  

Given the long list of “recent” models cited above, one might think that, as 
in the spatial-only case, there is a “standard” list of permissible models; 
however, this is currently far from being the case. The new families of space-
time covariance models are not exempt from problems and, in practice, the 
selection of one of them to represent the space-time dependencies existing in the 
phenomenon under study continues to be a challenge. Given the complexity of 
these “new” models, their visualization is recommended, as well as an analysis of 
how they evolve when the model parameters change; this is core information in 
the selection of the appropriate model to capture the spatio-temporal 
dependencies. However, visualization is not an easy topic and constitutes another 
of the pending questions regarding spatio-temporal covariogram analysis. By way 
of example, Huang and Sun (2017) state that “it is challenging to visualize and 
assess separability and full symmetry from spatio-temporal observations”. 

In conclusion, spatio-temporal interactions usually take very complicated 
forms. Although recent years have witnessed the development of a long list of 
spatio-temporal covariance models overcoming separability, isotropy, stationarity 
and full symmetry, easily-implementable and interpretable analytical procedures 
are still needed. The ingredients required for the construction of these covariances 
are readily available (for instance, it is easy to find a list of Bernstein functions, 
and even easier to find increasing concave functions), but a new effort must be 
made to provide researchers with new classes of covariance functions that are 
valid for a wide range of cases of real phenomena, and that are manageable and 
easily interpretable. The list of “standard” covariance models (as in the spatial-
only case) still needs a lot of work and, consequently, constitutes one of the open 
questions in this area. As highlighted by Wikle (2017) in his book review of 
Montero et al. (2015), “to date, there are no general spatio-temporal covariance or 
semivariogram models that can adequately describe the complex dynamics that 
are exhibited by the multivariate, often nonlinear, spatio-temporal processes that 
govern most real-world processes”. 

Second, when dealing with spatio-temporal data, the solution of STK 
equations can involve considerable computational burden which might lead to 
failure in the prediction procedure. More specifically, the calculation of the 
inverse of covariance matrices becomes a crucial problem. This is known as the 
“big n problem” (Banerjee et al., 2004), which arises very frequently when 
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dealing with massive spatio-temporal datasets. Therefore, it is no surprise that 
recent literature emphasizes the use of approximation methods and new 
methodologies for dealing with massive spatio-temporal data sets. Geostatistics 
proposes functional kriging (FK) as a promising alternative, but this is not the 
only one. However, this issue will be addressed in the next section. Following 
Wikle (2017), the new observation platforms have brought a huge number of 
observations with complex error structures (and, often, interest in huge numbers 
of prediction locations) to bear on the problem. Without substantial modification, 
classical geostatistical methods are unlikely to be suitable for these problems. 
Overviews of other recent methods that can deal with these issues can be found in 
Cressie and Wikle (2011), Hodges (2014), Banerjee et al. (2015) and Shaddick 
and Zidek (2015). 

Third, in case studies and practical applications, it has been found that STK 
prediction exhibits a very rapid reversion to the mean in locations near the 
border of the spatial region and/or close to the end of the time period considered 
(and, of course, in out-of-sample prediction). This does not come as a surprise, 
since kriging is an interpolator procedure; however, it is certainly disappointing 
and some additional research is called for on this topic. 

5. PRESENT AND FUTURE: FUNCTIONAL GEOSTATISTICS 
Functional geostatistics (FG), and more specifically FK, can be considered 

as the geostatistical alternative to STK aimed at overcoming the “big n 
problem” when dealing with large spatial or spatio-temporal datasets. This does 
not mean that it is necessarily the best alternative; only that is an alternative 
from the geostatistical perspective. 

According to Montero and Fernández-Avilés (2017b), the idea behind the 
functional alternative is to reduce the spatio-temporal problem to a spatial-only 
one, so that the observations of the phenomenon for the instants of time 
considered in the analysis at a particular spatial location are substituted with a 
smooth curve from which said observations are supposedly drawn. This smooth 
curve is called a functional datum, or functional observation (Levitin et al., 2007). 
The spatio-temporal point data problem is thus reduced to a spatial-only 
geostatistical (or kriging) exercise with functional data instead of traditional point 
data. Since the spatial kriging equations are well-known, the only problem is the 
construction of functional data and how to deal with them in statistical terms.  

In formal terms (Ferraty and Vieu, 2006), a random variable, χ , is called a 
functional variable if it takes values in an infinite-dimensional space (or 
functional space). An observation of that variable, χ , is called a functional 
observation. A functional dataset 1 2χ , χ , , χ N is the observations of N functional 

variables 1 2, , , Nχ χ χ  identically distributed as χ .  
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The construction of the functional data from the observed point data (the 
first step in FK) is usually carried out using cubic B-splines (Peng et al., 2006; 
Franco-Villoria and Ignaccolo, 2015). Another alternative pioneered by Eilers and 
Marx (1996) is penalized splines (Ranalli et al., 2016; Aguilera-Morillo et al., 
2017). This approach is recommended because when including a penalization, the 
subjectivism induced by the number of knots used and where they are located 
disappears. In addition, when using penalized splines, the representation of the 
spline as a mixed model is also recommended (Currie and Durbán, 2002; Eilers et 
al., 2015). This way, there is no need to select the smoothing parameter a priori, 
via cross-validation or information criteria, because the above transformation 
allows the smoothing parameter to be estimated (REML estimation is 
recommended) together with the other model parameters, which is a great 
advantage. Other less common choices are LOESS (local regression) smoothers 
or harmonic functions. 

The point kriging predictor is adapted to the functional case in order to make 
predictions of a functional datum at a non-observed spatial location s0. 
Accordingly, the FK predictor adopts the expression:

0
1

ˆ
i

N

i
i

χ λ χ
=

= ∑s s . The weights

iλ are obtained from the adaptation of the spatial-only kriging equations to the 
functional case. For example, in the case of second-order or intrinsically 
stationary stochastic RFs, the functional ordinary kriging (FOK) equations are 
as follows (Giraldo, 2009): 
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with ( ),i jT
t dtγ∫ s s and ( )

0,iT
t dtγ∫ s s denoting the trace-semivariogram function of 

the process evaluated in i j= −h s s  (left-hand side of the first N-1 FOK 

equations) and 0i= −h s s (right-hand side of those equations), respectively (in 
the functional case, there is a functional semivariogram; see Giraldo, 2009; 
Menafoglio et al., 2013), andα is the Lagrange multiplier.    

The prediction trace-variance is given by: 

( ) ( ) ( )( ) ( )
0 0 0

2
0 ,

1

ˆ
i

N

FOK iT T
i

Var t t dt t dtσ χ χ λ γ a
=

= − = −∑∫ ∫σσσσ   σ . (10) 

Note that two “complex” new terms appear in the FK equations: the trace-
semivariogram and prediction trace-variance. Both are adaptations to the 
functional context of the minimization criterion (minimizing the trace of the 
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mean-squared prediction variance matrix) given by Myers (1983) in multivariate 
geostatistics. The adaptation consists in replacing the sum with an integral.  

For practical purposes, specific values for ( ),i jT
t dtγ∫ s s and ( )

0,iT
t dtγ∫ s s  are 

needed. The steps to obtain them are as follows. First, the usual empirical 
semivariogram is adapted to the functional case as follows: 

( ) ( ) ( )( )2

, ( )

1ˆ
2 ( ) i jT

i j N
t t dt

N
γ χ χ
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= −∑ ∫ s s
h

h
h
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Second, the functions ( )
i

tχs are expanded in terms of some basis functions,

( )kB t : 
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where K is the dimension of the expansion and ikc are numerical coefficients. 
When using cubic splines with a common base of B-splines (as recommended in 

Giraldo, 2009; Romano et al., 2010) the calculation of ( ) ( )( )2

i jT
t t dtχ χ−∫ s s can 

be simplified as follows: 
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because, in such a case, the Gramian matrix W depends only on the knots and is 
thus constant for each pair of locations. In practice, W is computed as follows:  
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where t
kb π= represents the value of the k-th basis (k=1,2,…K) at instant of time π 
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(π=1,2,…T).  Third, the vectors of coefficients , 1,2, , ,i i N′ =c  are obtained by 
ordinary least squares (OLS) or weighted least squares (WLS). Fourth, for each 
pair of functional data, the corresponding point in the semivariogram cloud is 
computed. Fifth, for each lag distance, h, the semivariance is computed, that is, 
the semi-average of the corresponding points in the semivariogram cloud (Eq. 
13). The set of semivariances obtained is the empirical semivariogram. Finally, 
after these steps, a theoretical (valid) semivariogram must be fitted to the 
empirical one to be employed in the FK equations (9). 

Having outlined the main features of FK, it should be pointed out that, in 
spite of the limited use of this technique due to the complexity of the procedure, 
there is a misuse of FOK, which is applied in situations where stationarity does 
not apply. The functional universal kriging (FUK) equations have been derived 
in Caballero-Guardo (2011), but FUK shows the same problems as its point 
counterpart, UK, which strongly limits its use in practice. 

A pending question in FK is the issue that functional prediction reflects in 
reality the inertia of the RF at the prediction point, but part of the variability is 
lost. In fact, the extent of such a loss depends on the decisions involved in the 
smoothing process (this is why the representation in form of a mixed model is 
strongly recommended). Another pending matter is a more user-friendly 
explanation of both the trace-semivariogram and the trace-prediction variance. It 
is often the case that both are computed and used but it is clear that the researcher 
does not understand what he or she is doing. Finally, the show must go on in the 
field of FK prediction and an effort should be made to consolidate the interesting 
avenues of research proposed in Giraldo (2009) and Fernández-Avilés (2010) on 
the use of functional weights in both FK and functional cokriging equations. 

  Lastly, as outlined in section 4, FG, and more specifically FK, is not the 
only alternative to STK to overcome the “big n problem” when dealing with 
large spatial or spatio-temporal datasets.  A review of these alternatives can be 
seen in chapter 12 of Banerjee et al. (2015), but, as mentioned in the previous 
section, Cressie and Wikle (2011), Hodges (2014) and Shaddick and Zidek (2015) 
are also recommended references including overviews of modern methods that 
deal with this issue (as well as with other relevant issues in the field of spatio-
temporal data: random effects parameterizations, dynamic spatiotemporal models 
and hierarchical Bayesian inference). In broad terms, these alternative approaches 
can be classified as those that seek approximations to the exact likelihood, and 
those based on models which can handle fitting with large values of n. The 
approximate likelihood approaches include (i) spectral methods, lattice and 
conditional independence methods, Markov field approximations on regular grids 
(more specifically the integrated nested Laplace approximation), pseudo-
likelihood approximations, the variational Bayes algorithm and covariance 
tapering (the underlying idea is the use of compactly supporting covariance 
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functions; see Gneiting, 2002b; Mateu et al., 2013). The option of devising 
models for large spatial and spatio-temporal datasets includes low rank models, 
the essential idea of which is to replace the spatial or spatio-temporal process with 
a dimension-reducing process; and predictive process models, which is a class of 
models based on the idea that every spatial or spatio-temporal process induces a 
predictive process model (in fact induces many of them) which projects 
realizations of the “parent” process on to a lower-dimensional subspace, thereby 
reducing the computational burden. 
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