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ABSTRACT 
The process capability index (PCI) evaluates the ability of a process to produce items with certain quality 
requirements. The PCI depends on the process standard deviation, which is usually unknown and estimated by using 
the sample standard deviation. The construction of confidence intervals for the PCI is also an important topic. The 
usual estimator of the PCI and its corresponding confidence interval are based on various assumptions, such as 
normality, the fact that the process is under control, or samples selected from infinite populations. The main aim of 
this paper is to investigate the empirical properties of estimators of the PCI, and analyze numerically the effect on 
confidence intervals when such assumptions are not satisfied, since these situations may arise in practice.          
Keywords: Proportion of Non-Conforming Items, Capability Analysis, Monte Carlo Simulation, Standard Deviation, 

Sample Range. 

El índice de capacidad cuando no se cumplen algunas hipótesis de 
partida: Análisis y comparaciones empíricas. 

RESUMEN 
El índice de capacidad (PCI) evalúa la habilidad de un proceso para producir artículos con determinados requeri-
mientos de calidad. El PCI depende de la desviación típica del proceso, la cual suele ser desconocida y estimada a 
partir de la desviación típica muestral. La construcción de intervalos de confianza para el PCI también es un tema 
relevante. El estimador estándar del PCI y su correspondiente intervalo de confianza están basados en varias hipótesis 
de partida, tal como normalidad, el hecho de que el proceso se encuentra bajo control, o muestras seleccionadas de 
poblaciones infinitas. El principal objetivo de este trabajo es investigar las propiedades empíricas de dos estimadores 
del PCI, y analizar numéricamente el efecto en los intervalos de confianza cuando no se cumplen tales hipótesis, 
puesto que estas situaciones pueden presentarse en la práctica.  
Palabras clave: Proporción de artículos disconformes, Análisis de Capacidad, Simulación Monte Carlo, desviación 
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1. INTRODUCTION 
The wisdom is a key aspect within a production process of many companies. 

For instance, it allows evaluating: (i) the quality of items they produce; (ii) the 
number of items that meet certain conditions, etc. The interest on this issue is 
mainly motivated because the company aims to offer a product of quality to 
consumers, and which is able to build customer loyalty. Second, this interest is 
also justified by the fact that items must satisfy some quality specifications, which 
are generally imposed by external agents. For example, a regulation may require 
products with certain characteristics.  

The aim of the Statistical Quality Control (SQC) is the evaluation and 
monitoring of quality of products (Chakraborti et al., 2008, Mitra 2008, 
Montgomery 2009). The main methodology of SQC is to select a quality 
characteristic of a product under study, and then take a sample of them to measure 
this quality characteristic for the items selected in the sample. The sample data are 
transformed into indicators, which are used to compare the quality of the selected 
products to fixed in advance quality specifications. This translates into a very 
valuable knowledge for the next phase, which is to make a decision to run the 
production process more efficiently. A first option is to take no action on the 
production process, in the case the evidences indicate that the process is under 
control. On the other hand, the knowledge based on the sample information may 
indicate that many items do not satisfy the quality requirements, and the 
instruction is to perform corrective actions to improve the production process. 
This is an example of how the sample data are transformed into information, 
which is used to have a better knowledge of the production process. Accordingly, 
this knowledge is transformed into wisdom, which in turn is used to make the 
production process works more effectively, and consequently, reduce costs and 
make the company more profitable.    

The SQC is based on many quantitative techniques, such as control charts, 
acceptance sampling, process capability analysis, etc. This article focuses on the 
process capability analysis, which aims to evaluate the ability of a production 
process for the manufacture of acceptable products, i.e., products that meet the 
quality requirements. Such quality requirements are usually defined by the 
specification limits. An upper specification limit (USL) is the largest allowable 
value for the quality characteristic. Similarly, the lower specification limits (LSL) 
is the smallest allowable value for the quality characteristic. It is quite common 
that the quality requirements are based on both lower and upper specification 
limits. Specification limits are also known as tolerances, i.e., they indicate ranges 
of acceptance of a given item.   

A process capability analysis can be based on many techniques (control 
charts, histograms, probability plotting, etc), but the most common indicator is 
the process capability index (PCI), also named as the process capability ratio. 
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The PCI can be of a great importance for many companies, and for this reason it 
has been extensively studied (Kotz and Lovelace 1998, Kotz and Johnson 2002, 
Spiring et al., 2003, Montgomery 2009 p.351, etc). For instance, the PCI may 
determine whether the process is valid in the production of an item under 
certain quality requirements, and an early diagnosis is an important step to 
reduce costs and improve market. Therefore, the PCI evaluates the ability of the 
process to produce items within the specification limits, i.e., the ability to 
produce acceptable items. Note that PCI only holds if the corresponding process 
is in a state of statistical control, i.e., the process is “in control” (see 
Montgomery 2009, p.181, Evans and Lindsay 1999, p.321, Jensen et al., 2006). 
See also the Assumption A3 in Section 2.  

The process capability is directly related to the process variability. For 
instance, the PCI compares the specification limits with the natural variability of a 
process (Besterfield 2014), which is based on the process standard deviation 
(denoted as 𝜎𝜎 in this paper). It is quite common to consider a width of the process 
natural variability equal to 6𝜎𝜎 (Chakraborti el al. 2008, Mitra 2008, Montgomery 
2009, etc). An argument in favour of the 6𝜎𝜎 criterion is the fact that the “six-
sigma” techniques are topics of increased interest in many companies, hence the 
“six-sigma” is recently receiving a relevant expectation (Breyfogle 2003). Finally, 
note that control charts (Chen 1997, Montgomery 2009 p.184, Muñoz et al., 
2016) and other many methods in SQC are based on this criterion. 

In practice, the parameter 𝜎𝜎 is often unknown. The usual solution is to select a 
sample when we are confident that the process is in control (see the Assumption 
A3 in Section 2), and then the information collected from the sample is used to 
estimate 𝜎𝜎. Many methods have been proposed for this purpose, but the best 
known and used of them are based on the sample standard deviation and the 
sample range (Chakraborti 2008, Chen 1997, Duncan 1986, Jones et al., 2001, 
Luko 1996, Montgomery 2009 pp. 229 and 253, Ott 1975, Vanderman 1999, 
Wheeler 1995, Woodall and Montgomery 2000, Muñoz et al., 2016). We 
consider the estimator based on the sample standard deviation, since the 
traditional confidence intervals for the PCI are based on this estimator.  

The PCI depends on the process standard deviation, and for this reason, the 
PCI is usually unknown in practice and its estimation is required. For instance, 
Álvarez et al. (2015) analyze the effect on the PCI of different estimators based 
on multiples samples (m samples), which is the situation when working with 
control charts and other many techniques in SQC. However, many other 
situations may arise in practice, and for this reason they are analyzed in this paper. 
First, this paper assumes a single sample. Note that the expressions of estimators 
are different under this situation, which may arise when we are interested on 
analyzing the PCI at a given time. A second contribution with respect to Álvarez 
et al. (2015) is the fact that confidence intervals for the PCI (Kotz and Johnson 
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1993, p.43) are investigated. Third, we analyze the effect on the estimation of the 
PCI and the corresponding confidence intervals when different estimators of the 
process standard deviation are considered. In particular, we consider the biased 
and the unbiased estimators of the process standard deviations based on the 
sample standard deviation. Fourth, the main aim of this paper is to analyze the 
PCI when some assumptions are not entirely satisfied. In particular, the estimator 
of the PCI and/or its corresponding confidence interval assumes that: (i) the data 
follow a Normal distribution; (ii) samples are extracted from an infinite 
population; and (iii) the process is under control. These assumptions are described 
in Section 2. Note that the failure of these assumptions is an option in practice. 
For instance, the associated distributions are statistically valid when the variables 
are independent and identically distributed. However, situations may arise where 
this assumption is not satisfied. For instance, the production of many companies 
is stored in finite lots, from which samples are extracted for the application of 
different SQC techniques. The “acceptance sampling” is an example where 
samples are selected from finite populations (Montgomery 2009 p.629, Aslam et 
al., 2015, Rao et al., 2016, Nezhad and Niaki 2013, etc.) If samples are selected 
from finite populations, the usual confidence intervals for the PCI, which are 
based upon infinite populations, could have a poor performance. A contribution 
of this paper is to analyze numerically the usual confidence intervals for the PCI, 
which assume infinite populations. However, we consider a common situation in 
practice (finite populations) in order to investigate the effect of the lack of this 
assumption. Finally, we also compare results derived from center and off-center 
processes. A detailed description of the contributions of this paper can be seen in 
Sections 3.1 and 3.3. 

This paper is organized as follows. In Section 2, we first define the PCI, and 
different estimators based on the sample standard deviation are also introduced. 
The construction of confidence intervals is also addressed in this section. The 
most common assumptions of estimators and confidence intervals for the PCI 
are also described. Note that the different methods are based on a single sample. 
In section 3, we analyze numerically the effect on estimators and confidence 
intervals when the described assumptions are not entirely satisfied. The 
proposed empirical studies are carried out by using Monte Carlo simulation. 
Artificial data sets with different properties are considered, besides a real data 
set commonly used in the context of SQC. Our findings are also summarized in 
Section 4. 

2. ESTIMATION OF THE PROCESS CAPABILITY INDEX 
2.1. Definition 

Let x be a quality characteristic associated to a process that operates with a 
mean 𝜇𝜇 and a standard deviation 𝜎𝜎. The PCI is defined as the ratio of the width of 
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the specification limits and the width of natural tolerance limits of the process, i.e.  

,
6p

USL LSLC
σ
−

=  (1) 

where USL and LSL are, respectively, the upper and the lower specification 
limits, and 6𝜎𝜎 represents the natural variability of the process. We observe that 
𝐶𝐶𝑝𝑝 compares the natural variability of the process with the permissible range of 
values in the process, which is defined by the specification limits. 

The PCI describes how well the process produces acceptable items, i.e., the 
proportion of items that meet the specification limits. The process will be 
classified as unfit if the PCI is less than 1, since the width of the specification 
limits is smaller than the natural variability of the process, and this implies that 
the process produces an excessive proportion of non-conforming items. 
Corrective actions on the process are required in this situation. For example, if 
there is a margin in the quality requirements, the easier corrective action to 
reduce the proportion of non-conforming items is to increase the range of the 
specification limits. Otherwise, some improvements must be introduced in the 
process to reduce the process variability and the proportion of non-conforming 
items.  

The process is suitable to produce items within the specification limits if the 
PCI is larger than 1. The proportion of non-conforming items should be small in 
this situation, and it decreases as the value of the PCI increases. In addition, any 
change of the parameters associated to the process will have a smaller impact on 
the proportion of non-conforming items.  

The process is marginally suitable to produce items within specification 
limits if the PCI equal to 1 (Kotz and Johnson 1993, Chakraborti 2008 and Chen 
1997). This situation is very sensitive to any change in the parameters 
associated to the process, since this issue can produce a significant increase in 
the proportion of non-conforming items. 

From equation (1) we observe that 𝐶𝐶𝑝𝑝 uses bilateral specification limits, 
which is the most common situation. However, one-sided capability indexes can 
be easily defined (Montgomery 2009, p.352). For simplicity, we consider 
bilateral specification limits in this paper, but the extension of this study to the 
case of one-sided limits is quite straightforward, and similar results are also 
expected.  

The PCI defined by expression (1) assumes that the midpoint of the 
specification limits is equal to the process mean 𝜇𝜇. If this is the situation, it is 
said that the process is centered. For off-center processes, the PCI should take 
into account the position of the process mean relative to the specification limits. 
For this reason, the process capability index for an off-center process (PCIk) is 
defined as   
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(1 )pk pC k C= −  

where 

0 ,
( ) / 2

k
USL LSL

µ µ−
=

−
 

and 𝜇𝜇0 = (𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑈𝑈𝐿𝐿𝐿𝐿)/2 is the midpoint of the specification limits. The value 
𝑘𝑘 = 0 indicates that the production process is centered, i.e., 𝜇𝜇0 = 𝜇𝜇 and 
𝐶𝐶𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑝𝑝. If 0 < 𝑘𝑘 < 1, the distance between 𝜇𝜇0 and 𝜇𝜇 is less than half the 
interval width defined by the specification limits, and 𝐶𝐶𝑝𝑝𝑝𝑝 < 𝐶𝐶𝑝𝑝. If 𝑘𝑘 ≥ 1, the 
distance between 𝜇𝜇0 and 𝜇𝜇 is greater than half the interval width defined by the 
specification limits, and this implies a large proportion of non-conforming 
items. 

2.2. Common assumptions  

We assume a single sample with size n, where 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 denote the sample 
values of the quality characteristic x. The sample mean is defined as 

1

1 ,
n

i
i

x x
n =

= ∑  

whereas the sample standard deviation is defined as     

( )
1

2
2

1

1 .
1

n

i
i

S x x
n =

 
= − − 

∑  

The estimation of the PCI and/or the corresponding confidence intervals are 
generally based on the following assumptions:  

(A1). The quality characteristic x follows a Normal distribution, i.e., 
𝑥𝑥~𝑁𝑁(𝜇𝜇,𝜎𝜎). 

(A2).  The variables associated to the sample values 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are 
independent and identically distributed. For instance, this assumption 
holds if the sample is selected from an infinite population. 

(A3).   The process is “in control” (see Montgomery 2009, p.181, Evans and 
Lindsay 1999, p.321, Jensen et al., 2006). Assuming A1 and A2, this 
implies that both parameters of the Normal distribution (𝜇𝜇 and 𝜎𝜎) are 
under control, i.e., the statistic S is within the control limits  

𝑈𝑈𝐶𝐶𝐿𝐿𝜎𝜎 = �𝑐𝑐4[𝑛𝑛] +
𝑐𝑐

�2(𝑛𝑛 − 1)
�𝜎𝜎

𝐿𝐿𝐶𝐶𝐿𝐿𝜎𝜎 = �𝑐𝑐4[𝑛𝑛] −
𝑐𝑐

�2(𝑛𝑛 − 1)
�𝜎𝜎

 (2) 
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where 𝐿𝐿𝐶𝐶𝐿𝐿𝜎𝜎 denotes the lower control limit, 𝑈𝑈𝐶𝐶𝐿𝐿𝜎𝜎 is the upper 
control limit, and 𝑐𝑐4[𝑛𝑛] is a function that depends on the sample size 
(see Chen 1997). Some values of 𝑐𝑐4[𝑛𝑛] for various sample sizes have 
been tabulated in Appendix VI of Montgomery (2009). The value c 
is a constant used to define the distance of the control limits from the 
center line, which is fixed at 𝐶𝐶𝐿𝐿𝜎𝜎 = 𝑐𝑐4[𝑛𝑛]𝜎𝜎 in this situation. Note 
that it is quite common to consider the value 𝑐𝑐 = 3 (see 
Montgomery 2009, p.181, Evans and Lindsay 1999, p.321, Jensen et 
al., 2006). Similarly, the parameter 𝜇𝜇 is in control if the statistic �̅�𝑥 is 
within the control limits  

, 
UCL c

n

LCL c
n

µ

µ

σµ

σµ

= +

= −
 (3) 

where the value  𝑐𝑐 = 3 is usually considered.   

2.3. Estimation of the process capability index 

The process standard deviation 𝜎𝜎 is usually unknown, hence that the PCI 
defined by equation (1) is also unknown. The customary estimator for 𝐶𝐶𝑝𝑝 is 
obtained by substituting 𝜎𝜎 by its estimator into (1). We consider estimators based 
on the sample standard deviation, since the most common confidence intervals for 
the PCI are based on this estimator. The usual estimator of 𝜎𝜎 is defined by: 

ˆ Sσ =  
It is well known that 𝜎𝜎� is not unbiased. For this reason, and assuming A2, it is 

common to use the estimator   

[ ]4
4

ˆc
S

c n
σ =  

when the sample sizes are small. Note that 𝑐𝑐4[𝑛𝑛] is used because it provides an 
unbiased estimator for the process standard deviation 𝜎𝜎 (Duncan 1986, Luko 
1996, Wheeler 1995, and Woodall and Montgomery 2000). 

Following equation (1), the estimators of 𝐶𝐶𝑝𝑝 based on the previous estimators 
of 𝜎𝜎 are defined as: 

   
6

ˆ  
ˆp

LSE LIEC
σ
−

=  (4) 

. 4
4

ˆ
ˆ6p c

c

LSE LIEC
σ
−

=  (5) 
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For off-center processes, the estimators of 𝐶𝐶𝑝𝑝𝑝𝑝 are given by  

(1 ˆˆ ) ˆ
pk pC k C= −  

and 

. 4 . 4(1 ˆ)ˆ ˆ
pk c p cC k C= −  

where  

0 ,
( ) /

ˆˆ
2

k
USL LSL

µ µ−
=

−
 

and �̂�𝜇 = �̅�𝑥 is the sample mean.  
From expressions (4) and (5) we observe that the precision of the estimation 

of the PCI is directly related to the precision of the estimation of the process 
standard deviation. In this paper, we investigate the empirical performance of 
the estimators 𝜎𝜎� and 𝜎𝜎�𝑐𝑐4, and such results are compared to the empirical 
performance of the estimators of PCI (�̂�𝐶𝑝𝑝 and �̂�𝐶𝑝𝑝.𝑐𝑐4) and PCIk (�̂�𝐶𝑝𝑝𝑝𝑝  and �̂�𝐶𝑝𝑝𝑝𝑝.𝑐𝑐4).  

2.4. Estimation using confidence intervals 

The construction of confidence intervals for PCI and PCIk has been 
extensively discussed (Kane 1986, Heavlin 1988, Chou et al., 1990, Chou and 
Owen 1989, Li et al., 1990). However, such references assume A1, A2, and A3. 
In particular, we know that  

( ) 2
2

12

ˆ1
 , n

n σ
χ

σ −
−

→  (6) 

where 𝜎𝜎�2 = 𝐿𝐿2. If we consider the estimator �̂�𝐶𝑝𝑝 defined by (4), and use the 
distribution given by (6), it can be easily seen that a (1 − 𝛼𝛼)% confidence 
interval for PCI is defined by (Kotz and Johnson 1993): 

[ ] 1, /2 1,1 /2,  , ,
1 1

ˆ  ˆn n
p pL U C C

n n
α αχ χ− − − 

=  − − 
 (7) 

where 𝜒𝜒𝑛𝑛−1,𝑎𝑎 is the square root of the ath quantile of the chi-square distribution. 
In this paper, we analyze the confidence interval for the PCI based on the 
estimator �̂�𝐶𝑝𝑝.𝑐𝑐4, [𝐿𝐿𝑐𝑐4,𝑈𝑈𝑐𝑐4], which is similarly defined, i.e., we have to substitute 
�̂�𝐶𝑝𝑝 by �̂�𝐶𝑝𝑝.𝑐𝑐4 into (7). The confidence interval for 𝐶𝐶𝑝𝑝𝑝𝑝 suggested by Heavlin 
(1988) is given by [𝐿𝐿𝑝𝑝,𝑈𝑈𝑝𝑝], where  

( )

1
2

2

1
2

1 6
9 3

ˆ 1
1

ˆ
k pk pk

nL C Z C
n n nα

−

 −  = − + +   − −  
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and 

( )

1
2

2

1
2

1 61 ,
9 3

ˆ ˆ
1k pk pk

nU C Z C
n n nα

−

 −  = + + +   − −  
 

where 𝑍𝑍𝑎𝑎  is the ath quantile of the standard normal distribution. The confidence 
interval for 𝐶𝐶𝑝𝑝𝑝𝑝 based on 𝜎𝜎�𝑐𝑐4, [𝐿𝐿𝑝𝑝.𝑐𝑐4,𝑈𝑈𝑝𝑝.𝑐𝑐4], is similarly defined. The confidence 
intervals for 𝐶𝐶𝑝𝑝𝑝𝑝 are also analyzed by Chou et al. (1990), Kushler and Hurley 
(1991), Franklin and Wasserman (1992), Guirguis and Rodriguez (1992), 
Dovich (1992), Nagata and Nagahata (1994), etc. 

The aforementioned confidence intervals are based on the Assumptions A1, 
A2, and A3. However, situations may arise where such assumptions are not 
entirely satisfied. For instance, the “acceptance sampling” theory in SQC 
assumes the existence of finite lots, i.e., A2 is not satisfied in this situation. We 
could be interested on a capability analysis, and the sample data for this study 
could have been taken from such finite lots. If the size of the finite lots is large 
in comparison to the sample size, the confidence intervals based upon infinite 
populations can be used, since the use of the approximation to an infinite 
population is justified. However, this required assumption is not entirely 
satisfied otherwise. The effect of this approximation for different situations has 
not been investigated. In addition, the assumptions A1 and A3 could fail in 
practice. In Section 3, we analyze numerically the effect on the estimators and 
confidence intervals for the capability index when the assumptions A1, A2 and 
A3 are not entirely satisfied. For this purpose, we consider scenarios with 
different characteristics, and use Monte Carlo simulation.       

3. MONTE CARLO SIMULATION STUDIES 
Estimators and confidence intervals for PCI and PCIk are described in this 

paper. They can be based on different estimators of the process standard 
deviation, hence they may have a different performance under certain situations, 
such as samples with small sizes. First, this issue is investigated in this section. 
In addition, the usual confidence intervals for PCI and PCIk are based on the 
Assumptions A1, A2, and A3, but such assumptions may not appear in practice. 
We also analyze numerically the effect of the lack of the commented 
assumptions. Finally, we also compare the performance of estimators and 
confidence intervals based on both center and off-center processes.    

3.1. Description of data and scenarios used in simulation studies 

Three different scenarios have been considered. First, the sample data are 
randomly selected from a probabilistic distribution for each simulation run. This 
implies that variables are independent and identically distributed, i.e., samples 
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are selected from infinite populations (the Assumption A2 holds). The second 
scenario consists on samples selected from finite populations and using simple 
random sampling without replacement. In this case, N values are randomly 
selected from the corresponding probabilistic distribution, and they are 
considered a “lot” (a finite population), from which samples are selected. Large 
sampling fractions (𝑓𝑓 = 𝑛𝑛/𝑁𝑁) are considered in order to set more obvious 
differences between the cases of finite and infinite populations. Small sampling 
fractions are also considered in order to analyze numerically the approximation 
from finite population to infinite population. The sizes of finite populations are 
given by 𝑁𝑁 = {500, 10000}. For infinite populations, the sample sizes (n) range 
from 10 to 500, and the same values are considered when 𝑁𝑁 = 10000, which 
implies that the sampling fractions go from 0.1% to 5% in this situation. 
Finally, the values of n range from 5 to 250 when 𝑁𝑁 = 500, which give 
sampling fractions with values between 1% and 50%. Finally (the third 
scenario), the real data set “pistonrings” is also considered. This real data set is 
taken from the package “qcc” (Scrucca 2004) included in the statistical software 
R (see also Montgomery 2009). Pistonrings data contain values related to the 
inside diameter of piston rings for an automotive engine, and which are 
produced by a forging process. Following Harms and Duchesne (2006), we 
considered this real data set as a finite population (with 𝑁𝑁 = 125), from which 
samples are selected.  In this case, we considered sampling fractions with values 
between 5% and 50%. 

The commented random values are generated from three different 
probabilistic distributions: Normal, Gamma and Uniform. The aim is to analyze 
the effect of the lack of Assumption A1. Random values from the Normal 
distribution are obtained with a mean 𝜇𝜇 = 10, and a standard deviation 𝜎𝜎 = 1, 
and which represent, respectively, the mean and standard deviation of a quality 
characteristic. For the Gamma distributions, we considered the parameters 
𝛼𝛼 = 100 and 𝜃𝜃 = 1/10 of this distribution. Finally, random values from the 
Uniform distribution are selected between 8.26795 and 11.73205. It can be 
easily seen that the selected distributions have the same mean (𝜇𝜇 = 10) and the 
same standard deviation (𝜎𝜎 = 1). Various hypothesis tests indicate that the 
pistonrings data follow a Normal distribution. In this situation the process mean 
is 𝜇𝜇 = 74.00288 and the standard deviation is 𝜎𝜎 = 0.01291.    

We can observe that the previous scenarios compare situations where the 
Assumption A1 and A2 hold to situations where such assumptions are not 
entirely satisfied. We also follow this idea for the Assumption A3. For this 
purpose, we first calculate the various estimators without checking if the 
process is under control, i.e., we considered all selected samples (A3 is not 
entirely satisfied in this situation). In addition, we also calculate the various 
estimators when the process is under control, i.e., we only consider the samples 
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whose statistics 𝐿𝐿 and �̅�𝑥 are within the control limits (2) and (3), respectively. 
Such control limits are obtained using the constants 𝑐𝑐 = {2.5, 3}. Note that the 
percentage of samples under control is quite large, since data are extracted from 
the corresponding probabilistic distribution. This should be the situation in 
practice, i.e., most samples of a production process should be in control. For 
example, similar percentages are obtained for the real data set (pistonrings).     

The specification limits (LSL and USL) are chosen such that the capability 
indices take the values 𝐶𝐶𝑝𝑝 = 𝐶𝐶𝑝𝑝𝑝𝑝 = 1, i.e., we considered center and off-center 
processes, and where k takes the values 𝑘𝑘 = {0,0.25,0.5}. In other words, for 
the generated populations we considered 𝐿𝐿𝐿𝐿𝐿𝐿 = 7 and 𝑈𝑈𝐿𝐿𝐿𝐿 = 13 when 𝑘𝑘 = 0 
(𝐶𝐶𝑝𝑝 = 1; 𝜇𝜇0 = 10), 𝐿𝐿𝐿𝐿𝐿𝐿 = 7 and 𝑈𝑈𝐿𝐿𝐿𝐿 = 15 when 𝑘𝑘 = 0.25 (𝐶𝐶𝑝𝑝𝑝𝑝 = 1; 𝜇𝜇0 =
11),  and 𝐿𝐿𝐿𝐿𝐿𝐿 = 7 and 𝑈𝑈𝐿𝐿𝐿𝐿 = 19 when 𝑘𝑘 = 0.5 (𝐶𝐶𝑝𝑝𝑝𝑝 = 1; 𝜇𝜇0 = 13).  For the 
real data set (pistonrings), we considered the specification limits 𝐿𝐿𝐿𝐿𝐿𝐿 =
73.96414 and 𝑈𝑈𝐿𝐿𝐿𝐿 = 74.04161, since they also provide a capability index 
𝐶𝐶𝑝𝑝 = 1 when 𝑘𝑘 = 0.           

3.2. Empirical measures used in simulation studies 

The various estimators and confidence intervals are analyzed in terms of 
different empirical measures, and which are obtained after 𝐵𝐵 = 10000 
simulation runs. In particular, estimators are evaluated using the relative bias 
(RB) and the relative root mean square error (RRMSE). Note that they are the 
most common measures used to compare the accuracy of estimators (Rao et al., 
1990, Silva and Skinner 1995). For instance, if we consider the estimator �̂�𝐶𝑝𝑝𝑝𝑝 of 
the process capability index 𝐶𝐶𝑝𝑝𝑝𝑝, the corresponding values of RB and RRMSE 
are defined by: 

 
ˆ

pk pk
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pk

E C C
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is the empirical expected value of �̂�𝐶𝑝𝑝𝑝𝑝 based on the 𝐵𝐵 simulation runs, �̂�𝐶𝑝𝑝𝑝𝑝(𝑏𝑏) 
denotes the value of �̂�𝐶𝑝𝑝𝑝𝑝 at the bth simulation run, and   
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is the empirical mean square error of  �̂�𝐶𝑝𝑝𝑝𝑝. The values of RB and RRMSE 
defined by expressions (8) and (9) are similarly defined when estimating the 
standard deviation 𝜎𝜎, and they are denoted as 𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆 and 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑆𝑆𝑆𝑆. 

Confidence intervals are evaluated using the empirical coverage rates of 
them and a 95% for the confidence level. For instance, if L and U are the lower 
and upper limits of the confidence interval for 𝐶𝐶𝑝𝑝𝑝𝑝, the corresponding empirical 
coverage is defined by   

( )[ , ]
1

1 ,
B

PCI L U
b

Coverage I b
B =

= ∑  

where 𝐼𝐼[𝐿𝐿,𝑈𝑈](𝑏𝑏) denotes the value of a indicator variable at the bth simulation 
run, and which takes the value 1 if 𝐶𝐶𝑝𝑝𝑝𝑝 is within the interval [𝐿𝐿,𝑈𝑈], and it takes 
the value  0 otherwise. Note that it is desirable that the empirical coverage rates 
take values close to the nominal confidence level (95%). Estimators and 
confidence intervals are obtained using 𝜎𝜎� and 𝜎𝜎�𝑐𝑐4. 

3.3. Results derived from simulation studies 

First, estimators 𝜎𝜎� and 𝜎𝜎�𝑐𝑐4 are compared in Table 1. It is expected to observe 
differences between them when the sample sizes are small.  

Figures 1, 2 and 3 consider data selected from the Normal distribution, and 
the problem is to estimate 𝐶𝐶𝑝𝑝𝑝𝑝 = 1, with 𝑘𝑘 = {0, 0.25,0.5}, respectively. The 
population size of finite populations in these figures is 𝑁𝑁 = 500. In addition, 
Figures 1, 2 and 3 include empirical measures when all samples are under 
control, and using the constant 𝑐𝑐 = 2.5 for the control limits. Second, the effect 
of different values of k on the estimation of the capability index can be observed 
through Figures 1, 2 and 3.  

Third, note that each plot contains results when: (i) all samples are 
considered; (ii) only samples under control are considered. This issue will allow 
us to analyze the effect on estimators and confidence intervals when the 
Assumption A3 is not entirely satisfied. Note that the case 𝑐𝑐 = 3 in Figures 1, 2, 
and 3 is omitted because the differences between the scenarios (i) and (ii) is 
small under this situation.    

In addition, each plot of Figures 1, 2 and 3 contains both cases of finite 
(𝑁𝑁 = 500) and infinite populations, and which can be used to analyze the 
Assumption A2. This is the fourth aim in this study. Similarly (fifth study), we 
also consider the case of a finite population with size 𝑁𝑁 = 10000 and small 
sample sizes (Figure 4). In this situation, the approximation to an infinite 
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population holds well, and comparisons to the previous scenarios can be made. 
Alternative parameters in Figure 4 remain the same as used in Figure 1: 
𝐶𝐶𝑝𝑝𝑝𝑝 = 1, with 𝑘𝑘 = 0, and 𝑐𝑐 = 2.5 for the control limits. 

Table 1 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 
estimators of σ = 1 (SD) and Cp = 1 (PCI), and empirical coverages (%) of confidence 

intervals for Cp = 1 (PCI). Sample data are selected from a Normal distribution with 
µ = 10 and σ = 1 (infinite population). For the finite population, N = 500 data are 

selected from this distribution and then samples without replacement are selected from 
this data set. 

  𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺 𝑹𝑹𝑹𝑹𝑹𝑹𝑺𝑺𝑹𝑹𝑺𝑺𝑺𝑺 𝑹𝑹𝑹𝑹𝑷𝑷𝑷𝑷𝑷𝑷 𝑹𝑹𝑹𝑹𝑹𝑹𝑺𝑺𝑹𝑹𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷 

Population 𝒏𝒏 𝝈𝝈� 𝝈𝝈�𝒄𝒄𝒄𝒄 𝝈𝝈� 𝝈𝝈�𝒄𝒄𝒄𝒄 𝑷𝑷�𝒑𝒑 𝑷𝑷�𝒑𝒑.𝒄𝒄𝒄𝒄 𝑷𝑷�𝒑𝒑 𝑷𝑷�𝒑𝒑.𝒄𝒄𝒄𝒄 𝑷𝑷�𝒑𝒑 𝑷𝑷�𝒑𝒑.𝒄𝒄𝒄𝒄 

Infinite 
 

5 
10 
15 
20 
25 
50 

-6.4 
-2.8 
-1.8 
-1.3 
-0.9 
-0.5 

-0.8 
-0.1 
-0.1 
0.0 
-0.1 
0.0 

34.0 
23.0 
18.4 
16.0 
14.2 
10.1 

35.1 
23.3 
18.6 
16.1 
14.3 
10.1 

25.2 
9.3 
5.7 
4.1 
3.1 
1.5 

18.0 
6.4 
3.9 
2.8 
2.1 
1.0 

67.3 
30.9 
22.1 
18.3 
15.7 
10.6 

61.3 
29.3 
21.4 
17.8 
15.4 
10.5 

95.5 
95.3 
95.4 
95.3 
95.4 
95.0 

94.3 
94.8 
95.1 
95.0 
95.0 
94.9 

Finite 
(𝑁𝑁 = 500) 

 

5 
10 
15 
20 
25 
50 

-10.4 
-4.9 
-5.2 
-5.2 
3.0 
-0.0 

-5.6 
-2.4 
-3.6 
-4.0 
4.0 
0.5 

35.4 
24.1 
18.3 
16.8 
13.9 
9.2 

35.5 
24.2 
18.2 
16.6 
14.2 
9.3 

32.5 
12.5 
9.5 
8.6 
-1.1 
0.9 

25.1 
9.5 
7.6 
7.3 
-2.1 
0.4 

75.3 
34.0 
24.1 
21.1 
13.8 
9.5 

68.4 
32.1 
23.1 
20.3 
13.8 
9.5 

94.8 
94.0 
95.5 
94.1 
95.8 
97.0 

94.6 
93.9 
95.6 
94.4 
95.3 
96.8 

Source: Own elaboration. 

Sixth, the effect of the lack of Assumption A1 can be analyzed via the 
Figures 5 and 6, which are based on data extracted from the Gamma and 
Uniform distributions. The aim of Figures 5 and 6 is to estimate 𝐶𝐶𝑝𝑝𝑝𝑝 = 1, with 
𝑘𝑘 = 0, and we use 𝑐𝑐 = 3 for the control limits. 

Finally, we use the pistonrings data to analyze the performance of different 
scenarios under this real situation (Figure 7). Obviously, we only have the case 
of a finite population. However, Assumption A2 may hold in this example if 
samples are selected with replacement. For this reason, Figure 7 contains 
samples selected with and without replacement. We considered 𝐶𝐶𝑝𝑝𝑝𝑝 = 1, 𝑘𝑘 = 0, 
and 𝑐𝑐 = 2.5 for the simulation based on the pistonrings data.            
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Figure 1 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 
estimators of σ = 1 (SD) and Cp = Cpk = 1 (PCI), with k = 0,  and empirical coverages 

(%) of confidence intervals for Cp = Cpk = 1 (PCI), with k = 0. Sample data are selected 
from a Normal distribution with µ = 10 and σ = 1 (infinite population). For the finite 

population, N = 500 data are selected from this distribution and then samples without 
replacement are selected from this data set. Empirical measures are also obtained when 
the parameters µ and σ are under control: statistics x� and S are within the corresponding 

control limits based on the constant c = 2.5 (about 97% of the samples are in control). 
The X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the case of 

finite populations 

 
Source: Own elaboration. 
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Figure 2 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 
estimators of σ = 1 (SD) and Cpk = 1 (PCI), with k = 0.25, and empirical coverages (%) 
of confidence intervals for Cpk = 1 (PCI), with k = 0.25. Sample data are selected from a 
Normal distribution with µ = 10 and σ = 1 (infinite population). For the finite population, 
N = 500 data are selected from this distribution and then samples without replacement 

are selected from this data set. Empirical measures are also obtained when the 
parameters µ and σ are under control: statistics x� and S are within the corresponding 
control limits based on the constant c = 2.5 (about 97% of the samples are in control). 

The X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the case of 
finite populations 

 
Source: Own elaboration. 

. 
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Figure 3 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 
estimators of σ = 1 (SD) and Cpk = 1 (PCI), with k = 0.5, and empirical coverages (%) of 

confidence intervals for Cpk = 1 (PCI), with k = 0.5. Sample data are selected from a 
Normal distribution with µ = 10 and σ = 1 (infinite population). For the finite population, 
N = 500 data are selected from this distribution and then samples without replacement 

are selected from this data set. Empirical measures are also obtained when the 
parameters µ and σ are under control: statistics x� and S are within the corresponding 
control limits based on the constant c = 2.5 (about 97% of the samples are in control). 

The X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the case of 
finite populations 

 
Source: Own elaboration. 
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Figure 4 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 
estimators of σ = 1 (SD) and Cp = Cpk = 1 (PCI), with k = 0,  and empirical coverages 

(%) of confidence intervals for Cp = Cpk = 1 (PCI), with k = 0. Sample data are selected 
from a Normal distribution with µ = 10 and σ = 1 (infinite population). For the finite 

population, N = 10000 data are selected from this distribution and then samples without 
replacement are selected from this data set. Empirical measures are also obtained when 
the parameters µ and σ are under control: statistics x� and S are within the corresponding 

control limits based on the constant c = 2.5 (about 97% of the samples are in 
control).The X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the 

case of finite populations 

 
Source: Own elaboration. 
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Figure 5 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 

estimators of σ = 1 (SD) and Cp = Cpk = 1 (PCI), with k = 0, and empirical coverages 
(%) of confidence intervals for Cp = Cpk = 1 (PCI), with k = 0. Sample data are selected 

from a Gamma distribution with µ = 10 and σ = 1 (infinite population). For the finite 
population, N = 500 data are selected from this distribution and then samples without 

replacement are selected from this data set. Empirical measures are also obtained when 
the parameters µ and σ are under control: statistics x� and S are within the corresponding 
control limits based on the constant c = 3 (about 99% of the samples are in control). The 
X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the case of finite 

populations 

 
Source: Own elaboration. 
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Figure 6 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 

estimators of σ = 1 (SD) and Cp = Cpk = 1 (PCI), with k = 0, and empirical coverages 
(%) of confidence intervals for Cp = Cpk = 1 (PCI), with k = 0. Sample data are selected 

from a Uniform distribution with µ = 10 and σ = 1 (infinite population). For the finite 
population, N = 500 data are selected from this distribution and then samples without 

replacement are selected from this data set. Empirical measures are also obtained when 
the parameters µ and σ are under control: statistics x� and S are within the corresponding 
control limits based on the constant c = 3 (about 99% of the samples are in control). The 
X axis shows the sample sizes (n); and the sampling fractions (f=n/N) in the case of finite 

populations 

 
Source: Own elaboration. 

. 
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Figure 7 
Values of Relative Bias (RB (%)) and Relative Root Mean Square Error (RRMSE(%)) for 

estimators of σ = 0.01291 (SD) and Cp = Cpk = 1 (PCI), with k = 0, and empirical 
coverages (%) of confidence intervals for Cp = Cpk = 1 (PCI), with k = 0. The pistonrings 

data set is the population considered, with N = 125. Samples are selected with and 
without replacement. Empirical measures are also obtained when the parameters µ and 
σ are under control: statistics x� and S are within the corresponding control limits based 
on the constant c = 2.5 (the percentage of samples in control ranges from 4% (when 

f=0.05) and 0.1% (when f=0.5)). The X axis shows the sampling fractions (f=n/N) 

 
Source: Own elaboration. 
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3.4. Discussion of empirical results  

The performance of the estimators 𝜎𝜎� and 𝜎𝜎�𝑐𝑐4 can be compared in Table 1. As 
we expected,  𝜎𝜎� has larger biases (𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆) than 𝜎𝜎�𝑐𝑐4 when the sample size is small, 
and they perform similar as the sample size increases. 𝜎𝜎�𝑐𝑐4 can also have large 
biases in the case of finite populations and small sample sizes. If we analyze the 
accuracy of the estimators 𝜎𝜎� and 𝜎𝜎�𝑐𝑐4 in terms of 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑆𝑆𝑆𝑆, we can observe that 
both estimators have a similar performance, i.e., 𝜎𝜎� is slightly more accurate than 
𝜎𝜎�𝑐𝑐4 under various sample sizes. The estimator of 𝐶𝐶𝑝𝑝 based on 𝜎𝜎� (�̂�𝐶𝑝𝑝) also has a 
larger bias than the estimator �̂�𝐶𝑝𝑝.𝑐𝑐4, and the most important differences are 
observed when the sample sizes are smaller than 20. �̂�𝐶𝑝𝑝.𝑐𝑐4 is generally more 
accurate than �̂�𝐶𝑝𝑝 in terms of 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃. Desirable empirical coverage rates of 
confidence intervals for 𝐶𝐶𝑝𝑝 are generally obtained, since such values are close to 
the required level of 95%. Larger empirical coverage rates can be observed 
when 𝑛𝑛 = 50 and the population is finite.      

Figure 1 gives the values of 𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆 and 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑆𝑆𝑆𝑆 (in percentages) when the 
process standard deviation is 𝜎𝜎 = 1 and the sample data are selected from a 
Normal distribution. Finite and infinite populations are considered. We observe 
that results derived from infinite populations give biases close to 0% when the 
sample size is larger than 25. The values of 𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆 based on finite populations 
are also reasonable, but they generally range from -4% to 2%. A value of 𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆 
about 6% is obtained in this situation when = 25 . The various estimators have 
a similar performance in terms of 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑆𝑆𝑆𝑆. Figure 1 also gives the values of 
𝑅𝑅𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 (in percentages) when estimating 𝐶𝐶𝑝𝑝 = 1. Conclusions 
derived from the relative biases are similar to the case of estimating 𝜎𝜎 = 1, i.e., 
biases based on infinite populations are close to 0%, and they range from -5% to 
5% in the case of finite populations (for sample sizes larger than 25). Large 
biases are observed when the sample sizes are smaller than 25. Results derived 
from Figure 1 can be also used to analyze the Assumption A3, i.e., the fact that 
the process is in control when estimators and confidence intervals are obtained. 
We observe that relevant differences are not observed in terms of bias (RB) and 
accuracy (RRMSE) of estimators. However, we observe that confidence 
intervals obtained when the process is in control, and using the constant 𝑐𝑐 = 2.5 
for the control limits, have a larger coverage rate than the case where the 
Assumption A3 is not completely satisfied. Note that this difference appears 
when 𝑐𝑐 = 2.5, whereas similar coverage rates are obtained under the standard 
situation (when 𝑐𝑐 = 3).      

The process is centered in Figure 1. Off-center processes are considered in 
Figures 2 and 3, where 𝐶𝐶𝑝𝑝𝑝𝑝 = 1, with 𝑘𝑘 = {0.25,0.5}, respectively. We observe 
that the value of k does not have a relevant impact on the bias and accuracy of 
estimators, since the values of RB and RRMSE of Figures 1, 2 and 3 are similar.  
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However, we observe that the value of k may have an impact on the coverage 
rates, since such values are larger than 95% when 𝑘𝑘 = {0.25,0.5}.       

The population size is not large in Figure 1 (𝑁𝑁 = 500). Figure 4 has the 
same conditions than Figure 1, except on the fact that the population size is 
𝑁𝑁 = 10000 in Figure 4. This implies that the population is finite, but the 
approximation to an infinite population may fit well. The quality of this 
approximation can be also observed if we compare the results derived from 
finite and infinite populations in Figure 4, i.e., they provide similar coverage 
rates in this situation. However, we obtain different coverage rates in Figure 1.   

If we analyze the lack of the normality (Assumption A1) using the Gamma 
distribution and infinite populations (Figure 5), we observe that the impact is 
not important in comparison to results derived under normality (see, for 
example, Figure 1). Assuming finite populations, the coverage rates can have 
more variability in the scenario of the Gamma distribution (see also Figure 5). If 
we analyze a more extreme situation (the Uniform distribution; Figure 6), the 
most relevant impact can be observed in the confidence intervals, since the 
corresponding coverage rates are close to 100%. This is the situation for both 
finite and infinite populations.    

Similar conclusions are obtained under the real data set. First, the biases are 
closer to 0% as the sampling fraction increases. The different scenarios give 
similar values of RB and RRMSE. As far as the coverage rates is concerned, we 
observe a good performance when the Assumption A2 holds (samples selected 
with replacement). However, coverage rates have a worse performance as the 
sampling fraction increases, and assuming the scenario of samples selected 
without replacement.  

4. CONCLUSIONS AND FUTURE RESEARCH 
The most important conclusions derived from this paper are summarized in 

this section. Some future research lines are also introduced.  
First, we analyze two different estimators for the standard deviation and the 

capability index. As we expected, the biased estimator has larger biases when 
the sample sizes are smaller than 10, and they perform similar otherwise. They 
have a similar performance in terms of accuracy and empirical coverage.  

In addition, we also analyze center and off-center processes, i.e., different 
values of k are considered. Results indicate that the value of k does not have a 
relevant impact on the bias and accuracy of estimators, but values of k larger 
than 0 may produce confidence intervals with larger coverage rates.    

Estimators and confidence intervals for the capability index are based on the 
Assumptions A1, A2, A3, which are described in Section 2.2. Assumption A1 
indicates that the quality characteristic follows a Normal distribution. Desirable 
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coverage rates are obtained if we consider the Gamma distribution and infinite 
populations. In the extreme case of a Uniform distribution, coverage rates close 
to 100% are obtained, under both finite and infinite populations.   

Assumption A2 establishes that the variables associated to the sample values 
are independent and identically distributed. We have assumed this assumption 
by considering sample data extracted from infinite populations, and it was not 
satisfied when sample data were selected from finite populations. The first 
effect of the lack of this assumption is the presence of biases with a greater 
variation, but they also give reasonable values. This assumption does not have a 
relevant impact on the accuracy, i.e., on the values of 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅. The second 
effect can be observed in the coverage rates. Confidence interval for the 
capability index and based on finite population can have coverage rates larger 
than the required nominal level. The commented effects are not observed under 
finite populations with a large population size.         

Assumption A3 indicates that the process capability index may be applied 
when the process is in control (see Montgomery 2009, p.181, Evans and 
Lindsay 1999, p.321, Jensen et al., 2006). Two different situations are analyzed 
in this paper: (i) we only used samples whose statistics are within the control 
limits (the process is in control); and (ii) we considered all samples without 
checking if the process is in control. Note that the fact of using random values 
selected from probabilistic distribution provides a large percentage of samples 
in control, which is the common situation in practice. Similar results are 
obtained in terms of bias and accuracy. However, both situations may give 
different coverage rates for the confidence intervals of the process capability 
index.   

Conclusions derived from this paper suggest some future researches on this 
topic. For instance, it could be interesting to analyze the different scenarios of 
this paper for estimators and confidence intervals based on the sample range, 
instead of the sample standard deviation used in this paper. For this purpose, the 
construction of confidence intervals with desirable properties and based on the 
sample range is required. In addition, efforts could be made to improve 
coverage rates of confidence intervals for the process capability index in the 
case of finite populations. For instance, confidence intervals based on 
techniques such as linearization, resampling methods (bootstrap or jackknife) or 
the balanced repeated replication (Wolter 2007) could be analyzed for the 
suggested scenarios.      
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