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ABSTRACT 
The liberalization and deregulation of the Spanish electricity market has provoked an increase in the complexity of 
pricing behaviour. In particular, the volatility of electricity spot prices is the feature that best characterises the current 
Spanish market. Since an understanding of the volatility process in the electricity market is critically important to 
distributors, generators and market regulators, this article focuses on the asymmetrical pattern of the volatility of 
Spanish electricity spot prices, paying special attention to the direct or inverse leverage effect. For this purpose, we 
use both a range of traditional GARCH models and a T-ARSV model. The results clearly favour the proposed T-
ARSV specification, which suggests a positive leverage effect in the Spanish market. 
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Modelización de la Volatilidad en el Mercado Eléctrico Español. 
Modelos GARCH frente al modelo T-ARSV 

RESUMEN 
El proceso de liberalización y desregulación del mercado eléctrico español  ha incrementado la complejidad del 
comportamiento de los precios. En particular, la volatilidad de los precios spot es la característica que mejor define el 
mercado español actual. Teniendo en cuenta que el conocimiento de este hecho estilizado es clave para distribuidores, 
generadores y reguladores, en este artículo nos centramos en  el estudio de la respuesta asimétrica o no de los precios 
spot, así como en la existencia de efecto leverage directo o inverso. Para ello se utiliza una batería de modelos 
GARCH tradicionales en la literatura, a la que se enfrenta el modelo de volatilidad T-ARSV. Los resultados 
favorecen a la especificación T-ARSV y sugieren un efecto leverage positivo en el mercado eléctrico español. 
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1. INTRODUCTION 

The two last decades have witnessed a liberalization and deregulation of 
electrical monopolies worldwide. This process of liberalization and deregulation 
has provoked an increase in the complexity of pricing behaviour. Thus, there is 
an increasing need to understand how the planning methods used under mono-
poly will have to change in order to take the new deregulated environment into 
account. Decision making in these deregulated markets is extremely difficult 
because the markets are very complex and highly changeable. It is therefore 
unsurprising that risk management constitutes an issue of increasing importan-
ce, playing a core role in these new deregulated markets. 

Understanding the volatility process in the electricity market is critically 
important to distributors, generators and market regulators, as it influences the 
pricing of derivative contracts traded on electric power prices, therefore 
allowing them to better manage their financial risks. As stated in Gianfreda 
(2010) and the references therein, it also is crucial for firms to formulate their 
supply schedules and evaluate real investments using modern asset pricing 
techniques, and for consumers to hedge against the risk of price spikes or the 
risks associated with physical delivery. Additionally (Thomas and Mitchell, 
2005), system operators and industry regulators also need to understand volati-
lity to ensure that markets are designed and operated in a way that limits market 
power and promotes confidence and safety for market participants. 

In this article, we focus on the asymmetric pattern of the volatility of elec-
tricity spot prices. This aspect has not been sufficiently studied in the existing 
literature, especially within the Spanish wholesale market, but is extremely 
important when it comes to understanding the volatile behaviour of electricity 
prices. It should be taken into account that if the economic consequences of 
volatility are important and destructive, these consequences intensify if this 
volatility has an asymmetrical pattern, whose direction seems to depend on the 
markets in question. This therefore is the reason that we will pay special 
attention to this core stylized fact. In addition, the analysis of the asymmetrical 
pattern of volatility is critical because the existing literature draws no conclu-
sions about the existence of a direct or inverse leverage effect.  

Competitive electricity markets share high volatility -as well as assorted 
other important features including high-frequency trading, non-constant mean 
and variance prices, multiple seasonality, the weekend and holiday effect, a 
significant number of ‘outlier’ prices and dependency on explanatory variables-
with financial markets. But, volatility in electricity markets is even higher than 
in financial markets, and in some markets its asymmetric pattern is suspected to 
be opposite to that of the financial returns (the above-mentioned inverse 
leverage effect). This is the reason why volatility is considered to be the feature 
that best characterises the competitive electricity markets.  
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Since the liberalization and deregulation of electricity markets is a recent 
event, research about electricity pricing and on the volatility of electricity prices 
in particular is relatively new, but vast and diverse. Restricting ourselves to the 
recent literature, which focuses on the asymmetric response of volatility in 
wholesale electricity markets, GARCH-type models after filtering outliers are 
the common instrument used to analyse the asymmetrical pattern of volatility. 
Without wishing to be exhaustive, after the works of Clewlow and Strickland 
(2000), Weron et al. (2001), Huisman and Mahieu (2001), Lucia and Schwartz 
(2002) and Weron et al. (2004), in the framework of the econometric approach 
based on discrete time, Higgs and Worthington (2004) investigate the intraday 
price volatility process in four Australian wholesale electricity markets using a 
range of processes including GARCH, Risk Metrics, normal Asymmetric Power 
ARCH (APARCH), Student APARCH and skewed Student APARCH. Hadsell 
et al. (2004) examine the volatility of the wholesale electricity prices for five 
US markets using TARCH models. Biström (2005) studies the changes in 
Norwegian electricity prices combining an AR-GARCH model with the 
extreme value theory. Hua et al. (2006) also use GARCH for volatility 
modelling. Chan and Gray (2006) use the EGARCH modelling for the analysis 
of returns. Thomas and Mitchell (2005) consider the underlying volatility 
process in five regional pool markets in the NEM (Australia), and examine the 
applicability of a range of GARCH specifications, including the basic GARCH, 
TGARCH, EGARCH and PARCH models. Kâ Diongue and Guedan (2008) 
propose what they call the GGk-APARCH (k-factor Gegenbauer with 
Asymmetry Power GARCH) process for modelling the leverage effect and other 
stylized facts of electricity prices. Naeem (2010) compares ARMA-GARCH 
models and mean-reverting Ornstein-Uhlenbeck models for their respective 
capability to capture the statistical properties of real electricity spot market time 
series. His conclusion is that neither ARMA-GARCH models nor conventional 
mean-reverting Ornstein-Uhlenbeck models capture the statistical characteris-
tics of the real series. Gianfreda (2010) analyses the volatility of wholesale 
electricity markets for five markets in Europe using GARCH(1,1) and 
EGARCH(1,1) models after filtering the anomalous values. 

In this paper, four commonly used GARCH-type models are estimated to 
compete with the threshold autoregressive stochastic volatility (T-ARSV) 
model to explain the asymmetric pattern of volatility. The GARCH models 
include: (i) the AGARCH model proposed by Engle (1990), (ii) the threshold 
generalized autoregressive heteroskedasticity (TGARCH) model, proposed by 
Zakoian (1990) (iii) the EGARCH model developed by Nelson (1991) and the 
GJR model proposed by and Glosten et al. (1993). The threshold autoregressive 
stochastic volatility (T-ARSV) model was proposed by So et al. (2002). 
However, for estimation purposes we follow García and Mínguez (2009). We 

Estudios de Economía Aplicada, 2011: 597-616   Vol 29-2 



JOSÉ M. MONTERO, MARÍA C. GARCÍA Y GEMA FERNÁNDEZ-AVILÉS 600 

also estimate the ARSV model because it is nested in T-ARSV. We use this 
model to test the symmetric response hypothesis.  

As far as we know, the T-ARSV model has never been used to describe the 
volatility pattern of electricity prices. However, it has been successfully used to 
describe the volatility behaviour of returns of other energy products, including 
crude oil (OPEC reference basket and London Brent index), unleaded regular 
oxygenated or reformulated petrol, natural gas, butane and propane (Montero et 
al., 2010). 

The A-ARSV model proposed by Harvey and Shephard (1996) and 
developed  in Yu (2005), Asai and McAleer (2006), Ruiz and Veiga (2008b) 
and Smith (2009), is another well known stochastic volatility model for coping 
with the leverage effect including the correlation between both disturbances in 

the model, that is to say  1t tE     . However we do not estimate it 

because this article focuses on the analysis of the asymmetric response of 
volatility with threshold models. 

We have focussed our attention in the Spanish electricity spot market 
because although most of the existing literature refers to multiple pools in 
Australia, the U.S. and the Nordic Power Exchange (“NordPool”), the Spanish 
case has not received sufficient attention (the details of trading and the rules are 
complex, and given space constraints this article does not go into details. See 
León and Rubia, 2001, and Alonso, 2008, for a fuller explanation). We focus on 
the returns of the spot (in fact a Day-Ahead) market. The Day-Ahead markets 
have a high degree of volatility, because both supply and demand depend on a 
large number of variables, including supply factors (prevision of wind energy 
production, price of fuel and CO2, hydraulic reserves, availability of power 
stations, etc.) and demand factors (labour factors, temperature, etc.). Forward 
markets are used to avoid the high degree of volatility of the Day-Ahead 
markets, but they have an additional risk component: the credit risk. They allow 
the participants in the market to have a larger or lesser exposure to risk 
according to their financial strategy. In brief, forward markets can be seen as a 
solution for agents that need to manage their price or volume risk. Forward 
contracts must reflect the future expectative of the spot Day-Ahead markets and 
the forward price varies according to such an expectative. It therefore fluctuates 
according to the agent’s expectative and uncertainty about the factors that affect 
the spot price. Thus, the adequate modelling of volatility in the spot market 
allows for a more accurate estimation of the margins needed when negotiating 
contracts in the forward and derivatives markets.  

The time reference we consider is January 2000October, 2010, probably 
the largest and most recent interval studied in the literature.   
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The remainder of the paper is organized as follows: After this introduction, 
section 2 is devoted to methodological aspects. Section 3 delineates the main 
features of electricity returns in the Spanish spot market and reports the empi-
rical results derived from the comparison of T-ARSV and traditional GARCH 
models. Finally, Section 4 concludes the paper. 

2. METODOLOGICAL ASPECTS 

We propose a T-ARSV model to explain the dynamics of the volatility of 
electricity returns. We also estimate the symmetric ARSV model because it is 
nested in the T-ARSV specification, and use it to test whether or not the 
parameters indicating the asymmetric response of volatility in the T-ARSV 
model are significantly equal. This model is compared with the AGARCH, 
TGARCH, EGARCH and GJR models, which are the most common GARCH-
based models in the literature (see Rodriguez and Ruiz, 2009, for details on the 
statistical properties of some of the most popular GARCH models with leverage 
effect when their parameters satisfy the positivity, stationarity and finite fourth 
order moment restrictions). All these models have the same mean equation: 

. . (0,1)t t t ty i i d N                                                        (1) 

where are the returns, ty 2
t represents the conditional variance, and t , the 

innovations, are independent and follow a Gaussian distribution with zero mean 
and unit variance. The models differ in the conditional variance specification as 
indicated in Table 1. We propose to explain the dynamics of returns volatility 
using AGARCH(1,1), TGARCH(1,1), EGARCH(1,1), GJR(1,1), ARSV(1), and 
T-ARSV(1). The specification of the conditional variance in the abovemen-
tioned models is reported in Table 1. 

Table 1 
 Models for the specification of the conditional variance 

Models Conditional variance equation 

AGARCH(1,1) 2 2
0 1 1( )t ty 2

1t          

TGARCH(1,1) 0 1 1 1 1t t t tα d 1t             

EGARCH(1,1) 
12 2 1

1 1

1 1

2
log log t t

t t

t t

ε ε
σ

πσ σ
      


 

      

GJR(1,1) 2 2 2
0 1 1 1 1t t t tα d 2

1t             

ARSV(1) 1t t -h h t    

T-ARSV(1) 11 1 12 2 1( )t t t t th I I h      

Source: Own elaboration. 
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As is well known, in the AGARCH(1,1) model,  is the parameter that 
accounts for the asymmetrical behaviour of volatility, and the asymmetric 
effects (if 0   and significant) are captured by 2y1 1( t ) 

1td

 . The TGARCH 

and GJR models incorporate an indicator variable, , 

representative of the good news (












00

01

1

1

t

t




1 0t   ) and the bad news ( 1 0t   ) in the 

market. Thus, in case of good news the effect on volatility is 1 and in case of 

bad news the impact is 1  . In these two specifications, 0 is positive and 

both 1  and   are nonnegative (to guarantee a nonnegative variance). In 

addition, following the previous GARCH specification, the condition 11    

is satisfied to ensure the stationarity of the process . ty

The difference between TGARCH and GJR is that TGARCH models the 
conditional standard deviation, while GJR models the conditional variance. 
Note in Table 1 that the conditional variance equation in the EGARCH(1,1) 
model has been expressed, as usual,  in logarithmic form. This is a way to avoid 
imposing the parametric restrictions 0 10, 0, 0     . In this specification 

  


is the effect on volatility of a previous positive return, whereas 

  is the corresponding effect when 1 0ty   . In the ARSV(1) model, 

* exp(0.5 )t ht  , where is the log-volatility, th 2 2
*loglogt th   , and *  is 

a positive scale factor in the mean equation to avoid including a constant in the 
log-volatility equation. t  is a white noise process, and it follows a Gaussian 

distribution with zero mean and  variance 2
 , and both t and t  are 

independent,   , ,t t, 0E t s    . This way of specifying the conditional 

variance guarantees the positivity of the variance. For more details about these 
GARCH models, see Laurent (2007). 

The T-ARSV(1) model is the other model proposed to describe the dynamics 
of the volatility. The mean equation is defined as in the ARSV(1) model, Eq. 
(2), but the way of specifying the conditional variance is different.  

The asymmetrical pattern of volatility rests on establishing a known 
threshold that changes the value of the parameters in the model. Therefore, 
obtaining the T-ARSV model from an ARSV model implies: 

a) adding two new parameters, 11  and 12 , which measure the effect of the 
positive and negative returns on volatility, respectively. 

b) adding two indicator variables, 1tI  and 2tI , defined as:  
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1

2

1 when the price variation is zero or positive

0 otherwise

1 when the price variation is negative 

0 otherwise

t

t

I

I












 

Therefore, the T-ARSV(1) model can be seen as a generalisation of the 
ARSV(1) model which includes two additional parameters that allow for an 
asymmetrical pattern of volatility. Volatility is defined as an exponential 
function. Thus, the model is not linear. However, for estimation purposes it can 
be expressed in a linear form by squaring the mean equation and taking 
logarithms. Following Sandmann and Koopman (1998), we express the 
specification in a space state form to obtain the following linear model:  

1 ht
t t

t

h
u

Y
 

t   
 

Φ                                                         (2) 

where and  2logt tY y

2

11 1 12 2 2
2
*

, ,          

0
0

~ . . .  ( , ),          
1ln 0

2

t t
T t Tt i i d N

 



  

 
    
        

 

I I
u 0 Ω δ Φ Ω 

      (3) 

The unknown likelihood function of a T-ARSV(1) model, which is a non-
Gaussian model, has been evaluated by using the Monte Carlo method, 
approximating the non-Gaussian model by importance sampling (Durbin and 
Koopman, 1997, Sandmann and Koopman, 1998). 

The estimation of the parametric vector  2
11 12 *, , ,      requires the 

following algorithm: 

a) An approximated Gaussian model is obtained from an initial vector of 
parameters of the model. The initial values of the parameters are 
estimated from the available information for each return. 

b) The Gaussian likelihood function for the approximated model is 
calculated using the Kalman filter.  

c) The process is repeated until the desired level of convergence is achieved. 
At this level, the likelihood function reaches its maximum value. 

Finally, the parametric vector that maximizes the simulated likelihood 
function is obtained by using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
method, a well-known method to solve unconstrained nonlinear optimization 
problems.  
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The leverage effect is checked by testing the null hypothesis: 
H0:  11 12  (ARSV model) versus the alternative one: H1:  11 12  or T-

ARSV(1) model. Since the null and the alternative hypotheses refer to two 
nested models, this strategy allows for the implementation of a likelihood ratio 
test, the test statistic being 2(log log )RL L   , which follows (under the null) 
a chi-squared distribution with one degree of freedom.  

If the null hypothesis is not rejected, then there is no evidence of an 
asymmetric pattern of volatility. In this case, the ARSV(1) model could be 
preferred. On the other hand, the rejection of the null hypothesis suggests that 
the effects of positive and negative shocks on the dynamics of the volatility are 
different.  

The estimation procedure for ARSV(1) model has been conducted in Ox 
language and it is available at www.feweb.vv.nl/koopman/sv. The estimation of 
T-ARSV(1) has been carried out  with a new proprietary code using Ox 4.1. 
language following the steps proposed by Shephard and Pitt (1997), Durbin and 
Koopman (1997) and Koopman and Hol (2002) for ARSV(1) modelling.    

3.   EMPIRICAL APPLICATION: SPANISH ELECTRICITY 
SPOT RETURNS 

As in Lucia and Schwartz (2002), Worthington et al. (2005) and Gianfreda 
(2010), amongst others, we deal with the daily marginal prices reported by 
OMEL (the economic management of the electricity market in Spain is 
entrusted to OPERADOR DEL MERCADO IBÉRICO DE ENERGÍA – POLO 
ESPAÑOL, S.A, http://www.omel.es/files/flash/ResultadosMercado.swf.). As 
stated in Worthington et al. (2005), this treatment will entail the loss of at least 
some ‘news’ impounded in more frequent trading interval data but this 
drawback is widely compensated by the fact that daily averages play a crucial 
role in electricity markets, particularly in the case of financial contracts. As an 
example, MIBEL PTEL Base Load Financial Futures Contracts  have as the 
spot reference price the monetary value of the PTEL Base Index (1€/index 
point), which is equivalent to the arithmetic mean of all the Spanish hourly 
marginal prices of OMEL’s Daily Market, for the Portuguese system. The spot 
reference price for MIBEL SPEL Base Load Financial Futures Contracts is the 
monetary value of the SPEL Base Index (1€/index point), which is equivalent to 
the arithmetic mean of all the Spanish hourly marginal prices of OMEL’s Daily 
Market, for the Spanish system.  The spot reference price for both Base Load 
SPEL Forward Contracts and Base Load SPEL Swap Contracts, for each 
delivery day, is the monetary value of the SPEL Base Index (1€/index point), 
which is equivalent to the arithmetic mean of all the Spanish hourly marginal 
prices of OMEL’s Daily Market, for the Spanish system. 
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Some authors (Thomas and Mitchell, 2005, and Thomas et al., 2006, among 
others) use hourly or half-hourly trading-interval prices to allow for the 
presence of negative prices but in the Spanish market they are not a significant 
feature of the data. 

The daily series (January 1, 2000, to October 26, 2010) has been obtained 
from the series of hourly prices and is shown in Figure 1. As in Thomas and 
Mitchell (2005), we believe the use of a very-much-larger data set than that 
which is usually studied better characterises the volatility process by examining 
the market over a wider range of conditions and a broader market base. 

In Figure 1 the high volatility of Spanish electricity spot prices appears 
evident. By comparing volatility in the Spanish electricity spot market with that 
observed in IBEX-35 (the main index of Madrid Stock Exchange), it can be 
noticed that the former is 50% and the latter 38% during the period under study. 
This is not an idiosyncratic feature of Spanish markets (see Weron, 2006, for 
comparisons with other stocks, crude oil and natural gas). What is more, in 
other markets (United States, Australia, Germany, France, among others), the 
volatility of electricity prices is similar (around 50%) but the volatility of stock 
prices is substantially lower.   

Figure 1 
 Dynamics of average daily electricity spot prices in Spain: 1/1/200026/11/2010 
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Note: Figure 1, illustrates that: 
(i) Prices are not stationary, neither in mean nor in variance. 
(ii) Some extreme spikes can be observed. 

Source: OMEL.  
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The existence of spikes1 is one of the factors that make the modelling of 
electricity prices most difficult. The literature offers two options for coping with 
this problem: (i) the normal regime, where the anomalous values are filtered, 
and (ii) the abnormal regime, where spikes are taken into account. Researchers 
on the topic usually filter the anomalous values and focus on the normal regime. 
However, we favour the other option because: (i) since the number of spikes is 
usually large, the number of observations could be substantially reduced, (ii) to 
arbitrarily reduce the spiky magnitude is only a second and arbitrary best, and 
(iii) we believe that an appropriate strategy to model volatility should be robust 
enough to take spikes into account. 

After deciding to focus on the abnormal regime, since prices are non-
stationary, we deal with logarithms to correct the dispersion problem. This 
logarithmic specification also dampens the effects of extreme spikes. To correct 
from trend, we use a first-difference (Δ). To overcome the weekend effect we 
calculate a weekly lag (Δ7). These transformed prices (Δ7ΔlogPrice) are what 
we call returns. As stated in Black (1976), we are aware that there is no ability 
to hold a unit of electricity and that there is no initial investment in the 
commodity as such. Thus, spot electricity does not yield a return to an investor 
in the traditional sense. However, this terminology is widely used in the 
literature.  

Figure 2 illustrates that electricity spot returns have a null mean (see Table 
1) but non-constant variance. Specifically, some volatility clusters can be 
detected, which can be indicative of a non-constant conditional variance. 
Electricity returns are also uncorrelated ―see Figure 3; in addition, the Box-
Ljung statistic is (20) 12.6588

tyQ  , which indicates that the correlation 

coefficients are insignificant at a 0.05 significance level― although they are not 
independent, because squared returns are positive and significantly correlated 
(Figure 4). In addition, the value of the Box-Ljung statistic for the 
corresponding series is 2 (40) 1404.

t
y

Q 2 , which is significant at the 0.05 

significance level; thus, there exist dependence on the squared returns2. 
Marginal distributions of returns are both asymmetric and leptokurtic (Table 2). 
Figure 5 shows, in the upper panel, the cross-correlations between returns ( ) ty

                                                 
1 As stated in Blanco and Soronow (2001) and reproduced in Thomas and Mitchell (2005),  we 

prefer the term ‘spike’ to ‘jump’, because a jump process in financial markets usually suggests 
that the prices move rapidly to a new level and remain there. However, electricity prices tend to 
move abruptly to an extremely high level and revert to mean just as abruptly. 

2 Figure 3 suggests persistence of volatility. This is not the topic of the article, but details on 
asymmetric long memory volatility models as FIEGARCH or A-LMSV can be found in 
Bollerslev and Mikkelsen, 1996, and Ruiz and Veiga, 2008a, respectively.  
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and the absolute value of such returns ( t ky  ); the lower panel reports the cross-

correlations between returns and squared returns  2

t
y . It can be appreciated that 

both cross-correlations are significant, which could 
08b). 

et)

indicate the existence of 
leverage effect3 (see Ruiz and Veiga, 2008a, 20

Ele ns (S  mark tistics
Table 2 

ctricity retur panish spot : Basic sta  

Mean 
Standard Skewness Kurtosis J-B N ty ormali

test d  eviation coefficient coefficient 

0.019185* 8.540 0.14073 8.5156 3243.1** 

* Insignificant at the 5% level.  

** Significant at the 5% level.  

Source: Own elaboration based on data from OMEL. 

Electricity returns in the Spanish spot market 26/11/2010) 
Figure 2 
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3  The asymmetry observed in financial data was initially attributed to the effects of leverage, but 

this could not be the case in other markets. In any case we will use the term ‘leverage effect’. 
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Figure 3 
ACF of returns 
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Autocorrelation function (ACF) of squared returns 
Figure 4 
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Figure 5 
Cross-correlation functions  
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      In addition, there is a weekend effect: 

2
ty ty  

(0.00115) (0.0136)
log 1.182 0.168 ( )price Dummy week day weekend                       (4) 

, 
esp

anish 
ele

The above-mentioned features of the volatility of Spanish daily spot returns 
suggest that it can be modeled. GARCH models are the specifications 
traditionally used in the literature to estimate the volatility of electricity returns, 
but we propose the T-ARSV model, which is more powerful than GARCH 
models when it comes to capturating the stylised facts of electricity returns

ecially the volatility pattern, the stylised fact that we focus on in this work.  

For clarity, empirical results are reported in two tables. Table 3 reports the 
results obtained from the estimation of the AGARCH, TGARCH, EGARCH 
and GJR models. Table 4 presents the results for ARSV and T-ARSV models. 
And Table 5 focus on the stability of T-ARSV model. As stated above, we 
focus our attention on one of the most important stylized facts of the Sp

ctricity spot market: the existence of leverage effect (direct or inverse). 

As demonstrated in Table 3, , the parameter that indicates the presence of 
leverage effects, is positive in all GARCH models except in the EGARCH 
specification, but is only significant in the AGARCH(1,1) and EGARCH(1,1) 
models. According to the specification for AGARCH(1,1) reported in Table 2 
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(note that is preceded by a negative sign), this indicates that returns in t+1 are 
more volatile in the case of a negative return in period t than in the case of a 
positive return. As for the EGARCH(1,1) model, note that magnitude effect is 

measured by 1

1

2t

t

ε

πσ
 



  and the sing effect is indicated by 1

1

t

t

ε

σ
 



. Since 

the  parameter is negative, there is a strong market response to negative news. 
The TGARCH(1,1) and GJR(1,1) models do not detect an asymmetrical pattern 
of the Spanish daily spot electricity prices. That is to say, insignificant 
asymmetric volatility coefficient was found for both specifications, which 
suggests the same reaction pattern to both positive and negative shocks.     

The T-ARSV model also detects the asymmetrical pattern of volatility in 
returns (Table 4), and in the same direction as AGARCH (1,1), since 12 
exceeds 11. This fact implies that in case of an increase in electricity spot 
prices, the volatility, and hence the uncertainty, is greater than in case of a 
decrease in price. As a consequence, the T-ARSV(1) model could also be an 
appropriate candidate for modelling the behaviour of the volatility of electricity 
spot returns. 

Therefore, the traditional AGARCH(1,1) and EGARCH(1,1) models obtain 
the same result as the stochastic volatility T-ARSV(1) model. However, the 
AGARCH(1,1) model cannot be considered a good choice to estimate the 
volatility of the electricity returns in the Spanish spot market because the sum of 
the α and β values is the unity in the AGARCH(1,1,) model suggesting an 
explosive process and a potentially unstable model.  

Ranking by Akaike Information (AIC), Hannan-Quinn (HQC) and Schwartz 
Bayesian Criteria favours the T-ARSV model over the EGARCH(1,1), see 
Table 6.  

Table 3 
Estimates of Asymmetric GARCH(1,1)-Type models coefficients 

 AGARCH TGARCH GJR EGARCH 

0  
-0.0056 
(-1.93) 

0.0001 
(1.10) 

0.0000 
(1.02) 

-0.0120 
(-7.891) 

1  
0.1576 
(2.03) 

-0.0032 
(-0.150) 

-0.0037 
(-0.175) 

-0.4312 
(-5.566) 

  0.8423 
(13.6) 

0.8776 
(12.8) 

0.8830 
(13.3) 

0.9702 
(127.0) 

  0.04755 
(4.66) 

0.3105 
(1.65) 

0.3125 
(1.63) 

-0.4726 
(-16.360) 

  — — — 
0.2548 
(7.304) 

1   1 0.8744 0.8793 0.9702 

The values between parentheses indicate the value or the t-statistic. 

Source: Own elaboration based on data from OMEL. 
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Table 4 
Estimates of ARSV(1) and T-ARSV(1) models 

T-ARSV ARSV LR1 

* 11 12 
2
ησ  *  

2
ησ   

0.049 
(0.085) 

0.962 
(0.409) 

0.999 
(0.344) 

0.012 
0.042 

(0.084) 
0.986 

(0.252) 
0.017 10.6 

1Likelihood Ratio Test (LR). . Critical value: 3.84 (5%).  )ln(ln2 LLR 
The values between parentheses indicate the estimated standard deviation. 

Source: Own elaboration based on data from OMEL. 

Table 5 
Stability of T-ARSV model  

T-ARSV 

 
Sample 
size * 11 12 

2
ησ  

2004-2010 2522 
0.060 

(0.093) 
0.954 

(0.412) 
0.998 

(0.416) 
0.007 

2003-2010 2887 
0.058 

(0.091) 
0.958 

(0.432) 
0.998 

(0.470) 
0.010 

2002-2010 3252 
0.062 

(0.087) 
0.958 

(0.403)) 
0.998 

(0.545) 
0.010 

2001-2010 3617 
0.062 

(0.089) 
0.955 

(0.382) 
0.999 

(0.403) 
0.011 

2000-2010 3975 
0.049 

(0.085) 
0.962 

(0.409) 
0.999 

(0.344) 0.012 

The values between parentheses indicate the estimated standard deviation. 

Source: Own elaboration based on data from OMEL. 

Table 6 
Information criteria for Asymmetric GARCH and T-ARSV models 

 AIC HQ Schwartz 

AGARCH -1,0131 -1,01426 -1,01531 

TGARCH -1,0547 -1,05585 -1,05691 

GJRGARCH -1,0551 -1,05673 -1,05778 

EGARCH -1,1043 -1,10548 -1,10654 

T-ARSV -1,1184 -1,11957 -1,12062 

Source: Own elaboration based on data from OMEL. 
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Our findings contradict the finding of Knittel and Roberts (2005), who 
advocate for the existence of an inverse and perverse leverage effect (a positive 
shock will increase the volatility more than a negative one). On the contrary, 
our findings confirm the results of Gianfreda (2010) for Spanish, German, 
French and Italian markets using an EGARCH model, the finding previously 
obtained by Petrella and Sapio (2009) on the Italian PUN prices, and the results 
of most of the Australian GARCH-based studies.  

4.   CONCLUSIONS 

Volatility in electricity markets is even higher than in financial markets and 
in some markets its asymmetric pattern is suspected to be opposite to that of the 
financial returns (the well-known inverse leverage effect). Therefore, modelling 
the volatility behaviour, checking whether its response is symmetrical or not 
and detecting the presence or not of the perverse leverage effect are still core 
open questions in this topic, especially in the Spanish market due to the scar-
ceness of studies in the literature. 

In this article, we propose a threshold autoregressive stochastic volatility (T-
ARSV) specification to compete with four commonly used GARCH-type 
models (AGARCH, TGARCH, EGARCH and GJR). We also estimate the 
ARSV model, because it is nested in T-ARSV and we use it to test the symme-
tric response hypothesis. As far as we know, the T-ARSV model has never been 
used to describe the volatility pattern of electricity prices. However, it has been 
successfully used to describe the volatility behaviour of returns of other energy 
products that include crude oil (OPEC reference basket and London Brent 
index), unleaded regular oxygenated or reformulated petrol, natural gas, butane 
and propane. 

Results obtained for the Spanish wholesale electricity spot markets indicate 
that the T-ARSV model detects the asymmetrical pattern of volatility in returns. 
This asymmetrical response is also detected by AGARCH (1,1) and 
EGARCH(1,1) models. However, the AGARCH(1,1) model is a potentially 
unstable model and Akaike Information (AIC), Hannan-Quinn (HQC) and 
Schwartz Bayesian Criteria favours the T-ARSV model over the EGARCH(1,1) 
model. 

Another core finding is that, unlike in other electricity markets, the existence 
of an inverse leverage effect can be rejected in the Spanish electricity market. 
That is to say, as in the stock markets and other commodity markets, a positive 
shock will increase volatility more than a negative one. This finding will be of 
great help to market participants for risk management in these new ‘compe-
titive’ and deregulated electricity markets. 

As said in the introductory section, in this paper we have focussed on the T-
ARSV model, never used for analyzing the leverage effect in the electricity spot 
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markets. However, the estimation of the A-ARSV model in the electricity 
market context is still a pending assignment. What is more, the competition 
between threshold stochastic volatility models and stochastic volatility models 
with only correlation is a challenging future task. In other words, the challenge 
is to give an answer to Smith (2009) question: "Asymmetry in Stochastic 
Volatility Models: Threshold or Correlation?" in the context of the wholesale 
electricity spot markets. But, of course, the most promising and challenging 
avenue of research is to estimate in this markets the Smith (2009) general or 
augmented model with both threshold effects and correlated innovations.  
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