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RESUMEN

En este trabajo se desarrolla una metodologia tipo Dominio Estocéstico para analizar si un inversor
racional, insaciable y adverso al riesgo se beneficia de una particular expansion de sus posibilidades de
inversion. Mediante el Dominio Estocéstico se elimina la asuncion simplificadora subyacente a la aproxi-
macion tradicional Media Varianza a este fendmeno. En este trabajo se extiende también la aplicacion de
esta metodologia al analisis del comportamiento del mercado de pequeifias firmas en el mes de enero. Los
resultados obtenidos sugieren que la explicacion de este fendmeno, el Efecto Enero, no es congruente con
la asuncion simplificadora sobre el comportamiento de los rendimientos.
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ABSTRACT

We develop a Stochastic Dominance methodology to analyze whether rational non-satiable and risk
averse investors benefit from a particular expansion of the investment possibilities. This methodology
avoids the simplifying assumptions underlying the traditional mean variance approach to spanning. The
methodology is applied to analyze the stock market behavior of small firms in the month of January. Our
findings suggest that the previously observed January effect is remarkably robust with respect to
simplifying assumptions regarding the return distribution.
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SPANNING occurs if no investor in a particular class of investors benefits from a
particular expansion of the investment possibilities. This concept is useful for numerous
problems in financial economics. For example, it is useful for analyzing the impact of
the introduction of new assets (e.g., via [IPOs) or the relaxation of investment restrictions
for existing assets (e.g., liberalization in emerging markets).

Thus far, the literature on spanning predominately focused on mean variance analysis
(MVA); see, e.g., Huberman and Kandel (1987). Unfortunately, MVA in many cases
is not ‘economically meaningful’. For example, it is well known that MVA is consistent
with Expected Utility Theory only for restrictive classes of return distributions and
investor utility functions. Roughly speaking, the return distribution should be elliptical
or investor utility should be quadratic (see, e.g., Hanoch and Levy (1969), Section
IV). A wealth of evidence suggests that both assumptions are highly unrealistic. For
example, asset returns exhibit systematic skewness and investors exhibit a preference
for positive skewness (see, e.g., Kraus and Litzenberger (1976) and Harvey and
Siddique (2000)). One approach to circumvent this limitation is to extend MVA towards
amore general framework that also includes higher moments of the return distribution.
Unfortunately, economic theory does not forward strong predictions on investor
preferences or asset return distributions, and it gives minimal guidance for selecting
the appropriate set of moments.

This paper uses an alternative approach to spanning, using Stochastic Dominance
(SD; see, e.g., Levy (1998)). SD criteria rely on a minimal set of preference and
distribution assumptions, and they effectively consider the entire return distribution
rather than a finite set of moments. This approach is useful if there is no prior reason
to restrict preferences or distributions, as is generally true for investor behavior and
asset returns. Despite its theoretical attractiveness, SD thus far has not seen a strong
proliferation in financial economics. (Noteworthy exceptions are Falk and Levy’s (1989)
study of market reactions to quarterly earnings’ announcements and the studies of the
January effect by Seyhun (1993) and Larsen and Resnick (1996).) This is presumably
caused by several practical problems traditionally associated with SD: (1) the lack of
statistical power (=ability to detect inefficient portfolios) in small samples, (2) the
absence of tools for statistical inference, and (3) the computational burden for the
important case where it is possible to diversify between the choice alternatives. A
number of recent developments deals with these problems and provides a strong stimulus
towards the further proliferation of SD. First, various approaches have been developed
to approximate the sampling distribution of SD results, including bootstrapping (e.g.
Nelson and Pope (1990)) and asymptotic distribution theory (see, e.g., Davidson and
Duclos (2000)). These approaches allow for constructing confidence intervals and for
testing hypotheses. Second, Post (2003) presents tractable linear programming (LP)
tests for SD efficiency in the case with diversification possibilities. These tests improve
computational tractability and statistical power (all diversified portfolios are included
in the analysis, which improves the likelihood of detecting inefficient portfolios).
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U. Since the utility functions of the investors are elements of this set, i.e., for all
, we can obtain a weaker spanning condition:

Definition 2 Asset A is SSDR spanned if and only if no rational non-satiable, risk-
averse investor is better off by investing part of his or her wealth in A, i.e.:

max Ju(x"2)dG(x) = max [u(x"1)dG(x) VueU. 2]

SSDR spanning is related in a subtle way to the usual concepts of efficiency and
dominance. Asset A is SSDR efficient or not-dominated if it is optimal for some
rational non-satiable and risk averse investors. Unfortunately, this concept is relevant
only if the equilibrium requires some investors to invest in 4 exclusively. By contrast,
SSDR spanning occurs if all portfolios that include 4 are SSDR inefficient. This concept
does not require that no investor invests in 4 exclusively. Rather, it requires that no
investor invests part of his or her wealth in 4. Throughout the text, we will test the
hypothesis that spanning does not occur, i.e., some rational investors do invest at least
part of their wealth in 4. Rejection of this null gives strong evidence for a capital
market imbalance, because the concept of SSDR spanning is based on minimal prior
assumptions.

Apart from investor preferences, the CDF generally is not known, and hence we
cannot directly test SSDR spanning. Rather, information typically is limited to a discrete
set of time series observations, say with . Since we will not use the timing of the
draws, we are free to label the random draws by their ranking with respect to the
risky benchmark asset, i.e., .> For simplicity, we assume that the observations are
serially independent and identically distributed (IID) random drawings from the CDF.
Under this assumption, the empirical distribution function (EDF) , with , gives a
statistically consistent estimator for the CDF.* By focusing on the EDF rather than the
CDF, we can obtain an empirical spanning condition:

Definition 3 Asset A is empirically SSDR spanned if and only if:

max [u(x")dF (x) = max ju(xT;L)dF(x) VuelU < 3]

3 Since we assume a continuous return distribution, ties do not occur and the ranking is unique.
Still, the analysis can be extended in a straightforward way to cases where ties do occur e.g. due
to a discrete return distribution or due to measurement problems or rounding (see Post, 2001).
* However, there is substantial evidence that the distribution of assets returns (e.g. interest rates,
risk premiums, volatilities and correlation coefficients) varies through time. This problem is
especially relevant for applications that use data of long time periods. One possible approach
to account for time variation is to use econometric time series estimation techniques to estimate
a conditional CDF. The empirical test developed below could then be applied to random samples
from the estimated CDF.
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T T
rﬁe}\)l(;u(x, 1)/T_%%§éu(x, AT VueU. (4]

A straightforward approach to testing empirical SSDR spanning is to check
if every portfolio that includes A is empirically SSDR inefficient. Unfortunately,
computational burden prohibits this approach, as there are infinitely many
portfolios that include A. However, we can extend the analysis by Post (2003) to
develop a more tractable approach. For simplicity, we assume that the risk free
return exceeds the minimum return for the risky assets, and that it falls below the

average return for the risky assets, i.e., rggn X, KX % in,/T for . Under this
1€®

assumption, some investors will invest part of their wealth in the riskless asset,
but no investor will invest all of his or her wealth in the riskless asset, reflecting
Arrow s theorem - ‘A risk averter takes no part of an unfavorable or barely fair game;
on the other hand, he always takes some part of a favorable gamble’ (4rrow, 1971,
p. 100).

The following two test statistics can apply Definition 3 to empirical data:

Yp = iﬂrég{Zﬂr(xMz "xAt)/T : Zﬂ’(xM’ _xF)/T = O}’ 151
€O te®

with B={geR: g >822 p, =1}and

vy =suplé(0):£(0)20 Vi<®} (61

Wlth 5{(9) = Z((I _B)st . xAs +9xF)/T

These test statistics are derived from the optimality conditions for convex optimization
problems (see the proofto Theorem 1). The statistic basically checks if these conditions
hold for some utility function . The variables f € B represent a supergradient vector
ou(x,,) = (Ou(x,,)- - ou(x,, )" for a utility function ; represents the restrictions
that follow from the assumptions of nonsatiation and risk aversion. The statistic y,,
follows from the linear programming dual of /...

Theorem 1 Asset A is empirically SSDR spanned if and only if y, =y, = 0.

The test statistics y, and y,, can be computed by straightforward linear
programming (LP); full LP formulations are included as (P) and (D) in the proof in
appendix. The problem involves only T variables and T+1 constraints. For small data
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sets up to hundreds of observations, this problem can be solved with minimal
computational burden, even with desktop PCs and standard solver software (like LP
solvers included in spreadsheets). Still, the computational complexity, as measured by
the required number of arithmetic operations, and hence the run time and memory
space requirement, increases progressively with the number of model variables.
Therefore, specialized LP solver software is recommended for large-scale problems
involving thousands of observations.® Note that the primal problem may be unbounded

(and the dual infeasible) if A is not empirically SSDR spanned. For example, this

occurs if Z@ Xu!T >Z®: /T . In these cases, the test statistics take the value minus
te le

infinity and spanning does not occur. (The application in Section IV includes such

cases; see Table 2.)

To develop some intuition for the theorem, Figure 1 shows a simple example with
two periods, i.e., ® = {1,2}. The initial portfolio possibilities set is MF, and the efficient
set is MF (excluding F; recall Arrow’s theorem). Introducing the additional asset can
change the possibilities set and the efficient set. The figure displays two different
cases, labeled 4 and A, and the extended possibilities sets MFA and MFA’. In the first
case, with new asset 4, spanning occurs; MF (excluding F) remains the efficient set.
In fact, spanning occurs for all new assets included in the gray area

S={xe R :x +x, < (1-0)(xy, +Xyy) + 25,0, %, < (1-O)x,, +x,0 620}

In the second case, with new asset 4’, spanning does not occur. The efficient set
changes from MF (excluding F) to F’A’ (excluding the riskless ") and all investors
invest at least part of their wealth in the new asset.

=2

t=1

Figure 1
Two Period, Three Assets Example
Adding a third asset to M and F expands the investment possibilities. Introducing 4 does
not affect the efficient set MF (excluding F), and hence spanning occurs. By contrast,
introducing 4’ changes the efficient set to F’4’ (excluding F’) and spanning does not occur.
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2. SAMPLING ERROR

The test statistics i, and y,, are based on the EDF rather than the CDF, and the
test results are likely to be affected by sampling error. The applied researcher must
have knowledge of the sampling distribution in order to make inferences about the
true classification (SSDR spanned or not spanned). Post (2003) derived an analytical
characterization of the asymptotic sampling distribution of his efficiency tests. This
section extends the Post results towards the SSDR test statistic . (Duality implies that
the results apply with equal strength to y/,,.)

There are various hypotheses that could serve as the null hypothesis in a test
procedure. In SD analysis, a typical null hypothesis ( /) is that the risky choice
alternatives are independent random variables with the same population distribution,
or alternatively the choice alternatives are contemporaneously IID. We adopt this null
for our spanning tests and we assume that x, and x,, are contemporaneously IID
random variables with univariate CDF H : R — [0,1] with variance o> <. The
shape of the distribution of , under the null generally depends on the shape of
H(x). Our approach will be to focus on the least favorable distribution, i.e., the
distribution that maximizes the size or relative frequency of Type I error (rejecting the
null when it is true). This approach stems from the desire to be protected against Type
Ierror. For each H(x), the size is always smaller than the size for the least favorable
distribution. Interestingly, the least favorable distribution is relatively simple and known
results can derive the asymptotic probability of exceedance or p-value for y,. The
use of the most favorable distribution implies that we accept a high frequency of Type
Il error (accepting the null when it is not true) or a low power (1- the relative frequency
of Type II error). Future research could focus on tests that minimize Type II error.

Theorem 2 For the asymptotic least favorable distribution, y, behaves as a
normal random variable with mean zero and variance 25 | T.

The theorem implies that p-values Py, = y|H0) may be found as
(D(— y /(\/ijT 0')), with CI)() for the cumulative standard normal distribution function.
These p-values converge to zero as the length of the time series (T) grows. This
makes intuitive sense, because the EDF is a statistically consistent estimator for the
CDF under our maintained assumptions (see Section I). Still, for small time series, the

5 For an elaborate introduction in LP. we refer to Chvatal (1983). In practice, very large LPs can
be solved efficiently by both the simplex method and interior-point methods. An elaborate
guide to LP solver software can be found at the homepage of the Institute for Operations
Research and Management Science (INFORMS); http://www.informs.org/.
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p-values can be very large and a naive approach to the test statistic (reject efficiency
if y, > 0)is unlikely to yield anything but noise. A more sound approach is to compa-
re the p-value for the observed value of y/,, with a predefined level of significance «;
we may reject the null if the p-value is smaller than or equal to the significance level.
Alternatively, we may reject the null if the test statistic exceeds the critical value
@~'(I-a)/2/To. Computing p-values or critical values requires the unknown
population variance 42. We may estimate this parameter in a distribution-free and
consistent manner using the sample equivalent:

= D D -Dx, /T) /2T ¢ 7]

ie{M,A} te® =10)

3. SIMULATION EXPERIMENT

To assess the goodness of the above test procedure, we extend the simulation
experiment used by Kroll and Levy (1980) and Nelson and Pope (1991). Assume x,.
equals 0.06,and x,, and x , obey a bivariate normal distribution with means g, =0.20
and g, =0.15, standard deviations o,, = o, =0.20, and correlation coefficient p.
Asset A is SSDR dominated by M, because M achieves a higher mean and a lower
standard deviation than A. However, rational investors may still invest in A in the
context of a diversified portfolio. The diversification benefits from A depend on . It is
easy to verify that M and F SSDR span A ifand only if p > 0.50. However, sampling
errors complicate the empirical determination of the known classification. The results
based on a sample from the population may give one of the outcomes listed below.

8 This is simply the equally weighed average of the sample variance of and ; under the null, both
choice alternatives have the same variance.

7 Qur experiment differs from the original Kroll-Levy experiment in three respects. First, Kroll and
Levy focus on efficiency, while we analyse spanning. Second, Kroll and Levy use data sets of 100
observations and set the correlation coefficient at zero. By contrast, we consider various different
sample sizes and correlation coefficients. Finally, the original experiment did not include a
riskless asset, while we use the SSDR criterion that does use a riskless asset.
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Ho i, Spanning in population
population > 0.50
(p <0.50) e
No spanning in sample
(v, <@ (1-a)y/2/TG) No Error Type II error
Spanning in sample
(y, 2@ ' (1-a)\2/T5) Type I error No Error

We draw through Monte-Carlo simulation 1000 random samples of N observations
from the bivariate normal distribution, and apply our test procedure to each sample.
We follow this procedure for correlation coefficients of p e {0,0.05, e ,1} and for
samples of size N € {100,500,2000} . The nominal level of significance & (or the
size for the asymptotic least favorable distribution) is set at 5 percent.

rejection rate

0.5 06

07 08

correlation coefficient

Figure 2

Rejection Rates for the Extended Kroll-Levy Experiment

The figure gives the rejection rates for the null hypothesis (no spanning) based on
10,000 random samples of T € {100,500,2000} observations, from a bivariate normal
distribution with means g,, =0.20, z2, =0.15, standard deviations o,, = o, =0.20, and
correlation coefficient p e [0.5,1]. For each sample, the null hypothesis of no spanning
is rejected if and only if y, > ®~'(1 - @)+/2/T6 , using a significance level &=0.05.
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For all sample sizes and correlation coefficients, the size of the test procedure
approximates zero, which reflects the conservative nature of our test. The size of the
test comes at the cost of a low power in small samples. The test procedure is powerful
only if the sample is large or if spanning is ‘strong’, i.e., 0 is well above 0.5. The lack
of power in small samples makes intuitive sense for two reasons. First, the CDF
needs to satisfy a series of conditions in order to establish spanning. If the EDF violates
a single condition, then spanning will not be detected. Second, the procedure to account
for sampling error builds on the least favorable distribution that minimizes Type I error
at the cost of Type II error.

Fortunately, large data sets are available for many applications in financial
economics. Further, we could apply econometric time series techniques to obtain an
estimate for the CDF that is more efficient than the EDF. We could then apply our test
to a large random sample from the estimated CDF rather than the raw data. This
approach effectively uses prior distribution information to generate artificial return
observations. Still, it is desirable to develop a more powerful test, e.g., a test that
explicitly minimizes the probability of Type II error rather than Type I error, or a test
that is based on a particular class of return distributions.

4. THE JANUARY EFFECT

Empirical evidence suggests that the stock market returns of small firms are
abnormally high during the month of January (see, e.g., Keim (1983)). Several
explanations have been forwarded for this phenomenon, including ‘window dressing’
by institutional investors (see, e.g., Haugen and Lakonishok (1988)) and ‘tax-loss
selling’ by individual investors (see, e.g., Reinganum (1983)). Another explanation is
the mismeasurement of risk. The returns of small firms may be more risky than than
the returns of large firms, and a higher average return may serve as a compensation
for the additional risk.

The potential of using SD to account for risk was recognized by Seyhun (1993).
He studied the January effect by examining whether different decile portfolios are
SD efficient in January. The results suggest that the January effect can not be
explained by mismeasurement of risk; all portfolios except the smallest decile
portfolios are inefficient in January. Larsen and Resnick (1996) extended this study
by means of bootstrapping, so as to assess the sensitivity of the results to sampling
variation. Their results confirm the Seyhun results, although the pattern is somewhat
different; only the six largest decile portfolios are inefficient to a statistically significant
degree.

The Seyhun (1993) and Larsen and Resnick (1996) approach implicitly assumes
that investors have to choose one of the decile portfolios. Hence, this approach igno-
res the possibility to diversify between the decile portfolios and to invest in a riskless

Estudios de Economia Aplicada, 2005: 7-25 « Vol. 23-1



18 Thierry Post

asset.® To test whether the January effect is robust with respect to the inclusion of
diversification possibilities and a riskless asset, we apply our SSDR spanning test. We
analyze ten value-weighted decile portfolios of NYSE, AMEX, and NASDAQ stocks,
and the one-month US Treasury bill (the riskless asset). We use data on monthly
dividend-adjusted returns from July 1926 to December 2000 (894 observations) obtained
from the data library on the homepage of Kenneth French. Table 1 gives some
descriptive statistics for the data set.”

Table 1
Descriptive Statistics
Monthly dividend-adjusted returns from 1927 to 2000 for the ten value-weighted decile
portfolios of NYSE, AMEX, and NASDAQ stocks. Panel A gives the descriptives for the full
sample (894 observations). Panel B focuses on the observations for the month of January
returns (74 observations). Source: Kenneth French data library at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/.

Panel A: Full sample

Mean Std. Dev. Skewness Kurtosis Minimum Maximum
1* decile 0.014 0.105 3.396 30.703 -0.346 1.157
2™ decile 0.013 0.091 2.373 22.718 -0.329 0.946
3" decile 0.013 0.082 1.785 17.704 -0.328 0.755
4" decile 0.012 0.076 1.554 15.321 -0.317 0.658
5™ decile 0.012 0.074 1.313 14.294 -0.309 0.629
6™ decile 0.012 0.070 1.015 11.834 -0.314 0.547
7™ decile 0.012 0.067 0.938 11.972 -0.295 0.545
8" decile 0.011 0.063 0.787 10.957 -0.308 0.516
9™ decile 0.011 0.060 0.697 11.237 -0.324 0.485
10™ decile 0.010 0.052 0.072 6.725 -0.272 0.335
Panel B: January observations
Mean Std. Dev. Skewness Kurtosis Minimum Maximum
1* decile 0.085 0.101 1.692 3.531 -0.066 0.431
2™ decile 0.060 0.085 1.642 5.619 -0.094 0.455
3" decile 0.049 0.073 1.057 2.306 -0.105 0.318
4" decile 0.041 0.073 1.412 4.132 -0.092 0.354
5™ decile 0.036 0.065 0.759 1.679 -0.096 0.248
6™ decile 0.031 0.064 1.071 2.786 -0.089 0.286
7™ decile 0.025 0.059 1.069 2.285 -0.081 0.227
8" decile 0.021 0.053 0.502 0.759 -0.083 0.187
9™ decile 0.020 0.050 0.306 0.114 -0.084 0.157
10™ decile 0.012 0.046 0.213 -0.209 -0.079 0.134

8 Typically, previous papers that have examined stochastic dominance have not only included
size decile portfolios but also equally- and value-weighted indices, so as to account for
diversification possibilities. This approach makes sense if investor preferences are homogeneous.
In this case, the market portfolio must be efficient relative to portfolios formed on size. The
standard crossing algorithms can then be used to test if the market is dominated by any of the
ten size deciles. Similarly, the Post (2003) test can be used to test for efficiency of the market
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We test whether the smallest decile portfolio and the Treasury bill span the larger
decile portfolios. Specifically, for every decile portfolio, we compute the value of the
test statistic y,, using the smallest decile portfolio and the Treasury bills as benchmark
assets. Next, we compute the asymptotic least favorable p-value, with the sample
variance &2 to proxy the unknown population variance. If this p-value is smaller than
or equal to the significance level, then we may conclude that SSDR spanning occurs.

Table 2 gives the results. For decile the full sample, spanning occurs for none of
the 9 higher portfolios. Hence, there exist rational, risk-averse investors that invest at
least part of their wealth in the higher decile portfolios, and we cannot conclude that
the lowest decile portfolio exhibits abnormal performance. The results change
remarkably if we consider the January returns only. The smallest decile portfolio and
the T-bill span all of the 9 higher decile portfolios. For the 8 highest decile portfolios,
the classification is statistically significant at a level of confidence of about 95 percent.'”
These results support the results by Seyhun and Larsen and Resnick; the January
effect is not explained away by the mismeasurement of risk. The robustness of the
January effect is remarkable, especially because our test is based on the asymptotic
least favorable distribution and it typically involves low power for samples as small as
74 observations (see Figure 2).

relative to all possible portfolios constructed from the ten size deciles. However, these tests are
no longer relevant if investors have heterogeneous preferences. Dybvig and Ross (1982) have
demonstrated that the SSD efficient set generally is not convex, and hence, there is no guarantee
that the market portfolio is efficient if different investors hold different portfolios. (In this case,
there is no ‘size anomaly’ if, e.g., the market portfolio and the large decile portfolios are
inefficient, but different investors hold different portfolios that include all ten deciles.) A test for
spanning effectively tests if all assets are included in some efficient portfolio (not necessarily
with a weight that equals the relative market capitalization). This test is also relevant if different
investors hold different portfolios.

? To account for the variation over time of the return distribution, the raw returns in month t are
corrected for the difference between the riskless rate at time t and the riskless rate for December
2000.

19 Each p-value corresponds to the hypothesis that a single decile portfolio is not spanned. If we
test the joint hypothesis that all decile portfolios are not spanned, then we should adjust the
significance level, so as to avoid a ‘fishing expedition’; increasing the number of portfolios
increases the likelihood of finding small p-values. For example, a Bonferroni correction (see,
e.g., Miller (1981, pages 6-8)) uses a significance level of /N for each of N individual tests, which
guarantees that the overall significance level is less than . Using this approach for our study, we
can reject thejoint hypothesis that no decile portfolio is spanned with at least 99 percent
confidence.
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Table2
Test Results

The table gives the observed value for the primal test statistic y,, as well as the
asymptotic least favorable p-value 1 - q’(l/fp /(JN—T)&). Panel A gives results for the
full sample (894 observations); Panel B gives the results for the month of January
returns (74 observations). If the test statistic takes the value -, then the primal
problem (P) is unbounded and the dual (D) infeasible, and spanning does not occur
(see Section II).

Panel A: Full sample

Statistic p-value
1% decile 0.000 0.500
2™ decile 0.001 0.429
3" decile - 1.000
4™ decile - 1.000
5% decile —® 1.000
6™ decile - 1.000
7™ decile - 1.000
8" decile —® 1.000
9™ decile —® 1.000
10" decile —® 1.000
Panel B: January observations
Statistic p-value

1 decile 0.000 0.500
2™ decile 0.004 0.413
3 decile 0.035 0.016
4™ decile 0.030 0.033
5™ decile 0.049 0.002
6™ decile 0.025 0.062
7™ decile 0.060 0.000
8" decile 0.049 0.001
9™ decile 0.059 0.000
10" decile 0.048 0.002

5. CONCLUDING REMARKS

1. We stress that the SD tests are not intended to replace the MVA tests. SD uses
minimal prior preference and distribution assumptions and it therefore involves
less Type I error (wrongly classifying an efficient portfolio as inefficient) than
MVA does. However, by imposing prior structure on the data MVA involves
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more power (or less Type II error; wrongly classifying an inefficient portfolio as
efficient) than SD does. Therefore, the SD tests are natural complements rather
than substitutes for the existing M VA tests.

2. Our spanning tests effectively test if the risky asset 4 improves the investment
possibilities available from two benchmark assets: the riskless asset /" and the
risky asset M. This approach is useful if we can aggregate in a meaningful way
all risky benchmark assets and all new assets (e.g., using a two-fund separation
theorem). Still, it would be interesting to extend our analysis to the case with
multiple risky benchmark assets and multiple new assets. Our test is based on
checking whether all hyperplanes that support £ and M also support 4 (see the
Proof to Theorem 1). Introducing multiple new assets is relatively simple: we
can check if the hyperplanes support all new assets. This boils down to simply
applying our test for all new assets. (Section V effectively uses this approach to
analyze if the smallest decile portfolio and the T-bills span the 9 higher decile
portfolios.) By contrast, introducing multiple risky benchmark assets substantially
increases computational complexity. In our model, all portfolios of M and F
involve the same ranking for the returns (recall that the test statistics i, and
W ,, use ordered return observations). In case of multiple risky benchmark assets,
many different rankings generally occur. Determining all different rankings is
not easy and enumerating all possible rankings involves substantial computational
burden. Finding a more tractable approach is an interesting route for further
research.

3. We have focused on obtaining an analytical characterization of the asymptotic
sampling distribution of our test statistics. Bootstrapping is another approach to
sampling error. The bootstrap, first introduced by Efron (1979) and Efron and
Gong (1983), is a well-established statistical tool to analyze the sensitivity of
empirical estimators to sampling variation in situations where the sampling
distribution is difficult or impossible to obtain analytically. Nelson and Pope (1991)
demonstrated in a convincing way that this approach can quantify the sensitivity
of'the EDF to sampling variation, and that SD analysis based on the bootstrapped
EDF is more powerful than comparison based on the original EDF. The tractable
LP structure of our tests suggests that it is possible also for SSDR spanning to
substitute brute computational force to overcome the analytical intractability of
SD. The bootstrap potentially offers more power than the analytical
characterization in Theorem 2, as the theorem uses the least favorable distribution
that minimizes Type I error at the cost of Type II errors. Of course, this benefit
has to be balanced against the computational burden associated with
bootstrapping.
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APPENDIX

Proof to Theorem 1 We first consider the sufficient condition. The problem

m%X Z u( x,T AIT,uel, maximizes a concave objective function over a convex
M2 je@
set. Using, 2,; (u) for the optimal portfolio relative to and, the (necessary and sufficient)
optimality conditions for convex problems (see, e.g, Hiriart-Urruty and Lemaréchal
(1993), Thm. VII:1.1.1 and Cond. VII: 1.1.3) require that there exists an increasing
hyperplane that is tangent at X' A («) and that supports x,, and x, from above.
(This optimality condition generalizes the well-known Kuhn-Tucker conditions for
continuously differentiable utility functions towards superdifferentiable utility functions,
including the piecewise-linear utility function used below). The assets that are included
in the optimal portfolio should lie on the tangent hyperplane and the assets that are not
included should lie below it. Arrow’s (1971) theorem (see Section IT) implies that Mis
always included, i.e., 4;,,(«) > 0, and the optimality conditions therefore amount to:

2. 0u(x] 2 @)%y = %)/ T 20 (AL]
1e®
If 4 is empirically SSDR spanned, then x' 4, (&) = x" 4, (u) and A () =0, and
the optimality conditions also imply

Z@u(xf)»; @)Xy —X4)/ T 2 O, [A2]

1e®

forall # € U. By contrast, if 4 is not spanned, then A’, (1) > 0 and A must lie above

the tangent hyperplane through X" 4 (1), i.e.:
D Bu(x A )y, = x,)/T <0 (A3]

te®
for some y e /. By construction, du(x'A, («)) is a feasible solution, i.e.,
Ou (xu; (1)) € B (recall that all portfolios of M and F have the same ranking as M).
The inequalities (A1) and (A3) imply that this solution is associated with a strictly
negative solution value. Hence, spanning does not occur only if i/, < 0, or, alternatively,
spanning occurs if i, > 0.

We next consider the necessary condition. If y/, <0, then

> B (G =%u)/T <0;Y B (% —%,)/T 20 (Ad]

te® 1e®
with ﬂ‘ e B for the optimal solution. From ﬁ', we may construct two piecewise

linear utility functions: (1) P(x) = min(a, + B/x), with
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T-1

2, 50-5§(ﬂ:+|—ﬂ: W + %), and (2) p*(x) = p((x = Ap(P)X:) ] 2y (D))-
By construction, both functions are monotone increasing and concave and hence
p(x)eU and p'(x)eU. For the second function, we have
ap'(x" 2 (p)) = dp(x,,) = B’ . Hence, (A4) implies that A is included in the optimal
portfolio for p*(x). Consequently, if y, <0, then spanning does not occur, or,
alternatively, spanning occurs only if y/, > 0.

The alternative formulation is obtained by applying linear duality theory to .
Specifically, the following is a full LP formulation for

i
ianﬂt (xMt R xAz) /T [P]
t=1

T
s.t.Zﬁ,(xM, -x:)/T =0
t=1

B-p,20 t=1.-T-1
ﬁTZl
B free t=1-.-T

The LP dual of (P) is:
sup s, D]

8.t 00,y =X VT +8 = (0 —x )/ T

t i
QZ(st_xF)+Sl_S:—1ZZ(st_xAs)/T t=23'“5T
§s=1 s=1

s,20 ¢t=1,---,T
0 free

The equality restrictions can be satisfied only by setting s, = &, (6). Substituting
& (0) for s, in(D) gives . If spanning does not occur, then (P) is unbounded and
(D) is infeasible. However, if spanning does occur, then the duality theorem for linear
programming implies that (P) and (D) have the same solution value and hence

WP = WD S OQED

Proof of Theorem 2: Known results can derive the exact asymptotic sampling
distribution of ¥ = Y (%, —x,)/T . Under the null, x,, i € {M, 4}, t € ©, are

1e®
P P . " 2
serially and contemporaneously IID random variables with variance o~ < . Hence,
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the central limit theorem implies that > x, /T, i € {M A}, obey an asymptotically
1€®
[ID normal distribution with variance &2 /7", and i obeys an asymptotically normal

distribution with zero mean and variance 242 / 7. Since the unity vector is a feasible
solution to the primal problem, i.e., e € B, we know that i » <l for all return
distributions /(x). Moreover, there exist H(x) for which i approximates y ,, and
therefore the asymptotic distribution of {7 also represents the asymptotic least favo-
rable distribution for y/,,. Q.E.D.
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