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ABSTRACT

A test strategy consisting of atwo-step Lagrange multiplier test was recently suggested as a device
to reveal spatial nonstationarity, spurious spatial regression and presence of a spatial cointegrating
rel ationship between two variables. Dueto thewell known radicality of such pre-testsin finite samples,
the present paper suggests a\Wald post-test, based on maximum likelihood estimation. The finite-sample
distribution of the test under nonstationarity is derived using Monte Carlo simulation and applied to an
empirical example.

Keywords: Spatial nonstationarity, spurious regression, Wald tests, Lagrange multiplier tests, Regional
Economics.

Un contraste de Wald de No estacionariedad espacial

RESUMEN

Se ha propuesto recientemente una estrategia de contraste basada en €l Multiplicador de Lagrange en
dos etapas paraanalizar no estacionariedad espacial, regresion espacial espureay lapresenciaderelacio-
nes de cointegracion en el caso bivariante. Como es conocido, estos métodos condicionados tienen
problemas en muestras finitas por 1o que en el trabajo se presenta un contraste de Wald, basado en la
estimacion de maximaverosimilitud. En el trabajo se obtieneladistribucién en muestrafinitadel contraste
bajo la hipdtesis de no estaci onariedad mediante simulaciones de Monte Carlo, y se aplicaaun giemplo
concreto. Ladistribucién obtenida para el contraste de Wald parece tener unas colas més densas que la
distribucién tradicional, chi-cuadrado con un grado delibertad.
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1. INTRODUCCION

Spatial regression has been discussed widely in books dedicated to developments
in spatial econometrics, notably by Anselin (19884), and Anselin and Florax (1995).
The consequenses for estimation and inference in the presence of stable spatial
processes have been extensively investigated (Haining 1990; Anselin 1988a; Bivand
1980; Richardson 1990; Richardson and Hémon 1981; Clifford and Richardson 1985;
Clifford, Richardson and Hémon 1989). A recent study (Fingleton 1999) takesthefirst
stepsinto analyses of implications of spatial unit roots, spatial cointegration and spatial
error correction models. A follow-up to this study isfound in Mur and Trivez (2003),
where the concept of spurious spatial regression is established in a framework of
spatial trend (non)stationarity. In Lauridsen (2004) estimation of spatial error-correction
models using an 1V approach isinvestigated. Further, Lauridsen and Kosfeld (2004)
and Kosfeld and Lauridsen (2004) establish and apply atwo-step Lagrange Multiplier
test for nonstationarity.

Thetopicsstudied in the present investigation may be viewed as generalisations of
common topics studied in abasin of time series literature. For example, two survey
papers on the subject of unit rootsin economic time series data, Diebold and Nerlove
(1990) and Campbell and Perron (1991) cite over 200 basic sources on the subject.
Theliterature on unit roots and cointegration is one of the most rapidly moving target
in econometrics. Stock’s (1994) survey adds hundreds of references to those in the
aforementioned surveys and brings the literature up to date as of then. Useful basic
references on the subjects are Box et a. (1994); Judge et al. (1985); Mills (1990);
Granger and Watson (1996); Granger and Newbold (1996); Hendry et al. (1984);
Geweke (1984); Harvey (1989, 1990); Enders(1995); Hamilton (1994); and Patterson
(2000).

The present paper refinesrecent suggestions. Specifically, Fingleton (1999) suggests
that “very high” values of the Moran test for spatial residual autocorrelation indicate
spatial nonstationarity and spuriousregression. It is, however, left asan open question
how to distinguish between stationary positive autocorrelation and nonstationarity.
Lauridsen and Kosfeld (2004) shows that a two-step Lagrange multiplier (LM) test
for positive residua autocorrelation can provide a better founded basis to separate
these two cases and that the same procedure works as a diagnostic for spurious
regression and spatial cointegration. The practical applicability of the suggested LM
test approach was illustrated in Lauridsen and Kosfeld (2004) and Kosfeld and
Lauridsen (2004), using cases from recent empirical research. But they did not treat
thewell known radicality problem of the LM test, dueto its high finite-sample power
function. It is well known that the LM test, the Likelihood Ratio (LR) test and the
Wald test for any hypothesisare asymptotically equivalent, but that they for any finite
sample size obey the inequality LM > LR > Wald. The present paper introduces the
Wald test asadevicefor detecting spatial nonstationarity and derivesthefinite-sample
distribution of thistest under the null using Monte Carlo simulation. Though focusison
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the application of thetest asadeviceto reveal spatial nonstationarity, the established
results can be straightforwadly generalised to obtain a device to test for spurious
regression and for spatial cointegration along the lines suggested by Lauridsen and
Kosfeld (2004).

2. MODELS WITH SPATIAL DYNAMICS
2.1. The regressive, spatially autoregressive model

Thefirst order spatially autoregressive model (SAR(1) model) wasinitially studied by
Whittle (1954) and has been used extensively in works by Ord (1975); Cliff and Ord
(1981); Ripley (1981); Upton and Fingleton (1985); Anselin (1988a); Griffith (1992);
Haining (1990); Lauridsen (2004). For applied research the SAR(1) model isextended
by explanatory variables (see Upton and Fingleton, 1985; Anselin, 1988a; Haining,
1990; Lauridsen, 2004). The regressive, spatially autoregressive model (SARX(1)
model) is established as

y=pWy + XB+v, [21]

in which y is an nx1 vector, X an nxK matrix of explanatory variables, p the
autoregressive parameter, | thenxn identity matrix and v an nx1 vector of independently
normally distributed errors with zero expectation and variances 62, i.e. v —-N(0,62),
W denotes an nxn spatial weight matrix. It is obtained by row-standardisation of the
nxn contiguity matrix W* which is defined by Weo=1 if the area unitsi and | are
neighbours, and W = = 0 otherwise, i.e. W, = VV* / I, W For alternative
specifications of the spatlal weight matrix, seee 0. C|Iff and Ord (1981) and Anselin
(1988a). W may be noncircular, which is the case for the time-series case whereW
=1ifj=i-1, fori=23,..,n. For the general spatial case, W is generaly circular. As
proved by Anselin (1988a), circularity of W renders OL S estimation of the parameters
inefficient. Finally, for the general case, p is restricted to the interval between -1 and
+1 and thus may assume positive aswell as negative values. Although meriting interest
initself, the negative case is conceptually different from the usual positive case. We
thus narrow our focus in the present investigation to the common case where p is
positive.

2.2. Spurious regression and nonstationarity

If y and one or more of the x variables are generated according to SAR scemes
with positive autoregressive parametersand y is regressed on X, i.e.
y =Xp +¢, [2.2]
with g, asthe error term, arisk of spurious regression occurs. Especialy, in the case
of spatial nonstationarity, wherey and one or more of the x variableshave autoregressive
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parameterscloseto 1, therisk of spuriousregressionisaarmingly high. It manifestsin
the OL S residuals e of the regression tending to be highly spatially autocorrelated.
This is demonstrated in Fingleton (1999) where extremely high values of the test
statistics of the Moran test for spatial autocorrelation (Whittle, 1954; Anselin, 1988a)
have been found. In this setting high values of Moran’s | can be viewed as the
counterpart of low values of the Durbin-Watson statistic having been established in
spurious time-series regression. In both cases the behaviour of the test statistics is
used as an indication of nonstationarity.

Thestochastic processthat the OL Sresidual e of theregression (2.1) are generated
from usually hasto beinferred by inspecting their behaviour. Fingleton (1999) leaves
it as an open question how to separate the case of stationary positive autocorrelation
(O<p<1) from the nonstationarity case (p=1). Moreover, Fingleton (1999) does not
address the well-known power of the Moran | test towards misspecifications e.g. in
the form of spatial heterogeneity (Anselin, 1988a). Being an advantage in some
circumstances, this feature of the Moran | is not necessarily an advantage when
investigating specific features of the data generating processes underlying the model
inconsideration.

In order to account for both shortcomings, Lauridsen and Kosfeld (2004) suggested
atwo-step Lagrange Multiplier test for spatially autocorrelated errors. The LM error
statistic (LME) developed in Anselin (1988a, 1988b),

LME = (€ We/ 672/ tr(W? + W’ W), [2.3]

is asymptotical y? distributed with 1 degree of freedom under H :p = 0. Therefore, a
large LME value indicates either spatial nonstationarity or stationary, spatial error
autocorrelation. This result corresponds to the suggestions of Fingleton (1999) with
the Moran | test replacing the LM test. Next, under the null of nonstationarity, H :p.=
0, pe = ue € =p*u follows from the spatial error process e=p W e +p, u~|\]
(0,62), with p = | - W as the spatia difference operator. p* denotes the Moore-
Penrose generalised inverse which satisfies the conditions p*pp* = p* and pp*p =
p. By employing the spatial difference operator p to (2.2) the transformed regression
equation

py = pXB + [2.4]

isobtained. Equation (2.4) impliesthat aregression of py onpX providesi.i.d. errors,
so that the LM error test statistic for this spatially differenced model (DLME) will be
closeto zero. Ontheother hand, if the null of nonstationarity, Hipe=1, doesnot hold,
then the spatial differencing will bring about an error term of the form pe = (1-W)(I -
p: W), or p = (I-p: W) €.
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The spatially autocorrelated errors resulting from a spatially “overdifferencing”
are expected to go along with a positive DLME value. Concluding, the test strategy
consists of calculating and inspecting the LME and the DLME values, leading to one
of three conclusions (where the test result is termed to be “positive” if the LM test
statistic differssignificantly from zero and “ zero” otherwise): Nonstationary, spurious
regression (LME positive, DLME zero); stationary spatial autocorrelation (LME and
DLME positive); or absense of autocorrelation (LME zero, DLME positive).

It isfurther suggested by Lauridsen and Kosfeld (2004) to investigate whether y or
any of the x variables are spatially nonstationary. This may be revealed by using the
suggested procedure for aregression of the variablein question (i.e. z being one of y,
X,, X, ... ) on aconstant term. Specifically, the regressions z = ai +€ and pz = api +
€ = € readily provide the LME and DLME test statistics, which lead to one of three
conclusions: z is spatially nonstationary (LME positive, DLME zero); z represents a
stationary SAR scheme (LME positive, DLME positive); or z is free of any spatial
pattern (LME zero, DLME positive). According to the data generating process z =
pWz + v, the z variables are spatially integrated of order one, SI(1), in the case of
nonstationarity.

An appealing alternative to the LM test procedure suggested is to estimate the
SAR model and test the hypothesis p=1 using a Wald test. This proposal resembles
the Dickey-Fuller approach applied to the time series case. However, even for this
specia case, it is known that (1-p)/s.e.(p) does not adhere to a standard normal or t
distribution under nonstationarity. Thus, it is necessary to know the distribution of the
Wald test under spatial nongtationarity for different samplesizes. A further complication
isthat this distribution may be dependent on the specific contiguity matrix in question.
The present study presents benchmark results based on three different tesselations:
the bishop, rook and queen tesselations. These three tessel ations cover abroad range
of empirical contiguity matrices.

2.3. The Wald test

TheWald test isbased on maximum likelihood estimation of the model with spatially
autocorrelated residuals. Specificaly, thelog likelihood function for y reads

L = (2no?)™ exp(-(y-XB)' A’ A(y-XB)/(267)) |A|

with A =1 - pW (for adetailed derivation, seeAnselin, 1988a). Using thefirst order conditions
derived by Anselin (1988a), it isan easy matter to search theinterval (-1, 1) for the estimate of
p that maximises L. Based on the estimate of p, estimates for f and 62 can be calculated
analytically. Inserting these estimatesin the expected val ue of the second order conditions, the
covariance matrix for the parameters 0 = (B’ ,p, 62)’ can be calculated (see Anselin, 1988afor
details). Formally, thefirst order conditionsread

dL/dB = (y-XB)' A’AX/(6?) =0, or B = (X' A’AX) X' A’ Ay;
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dL/dp = (y-XB)' A"W(y-XB)/(c?) - tr(A*W) = 0; and
dL/d(c?) = (2Bo?) ™2 exp(-(y-XB) A’ A(y-XB)/(26) |A| = 0, or 62 = (y-XB)' A’A
(y-XB)/n.

The covariance matrix iscal culated by inserting the maximum likelihood estimates

in the inverse to the information matrix, i.e. V = 1,*, where |, is made up of

= X'A’AX/c?,

= O’
2= 0,

= tr((WA™)) + tr((WA)' (WA™)),
= tr(WA*Y/o?), and

= n/(2(c?)?).

IBB
Iﬁp
| oo
I

Y
Ip62
I

6262

Specifying the hypothesisp =1 asR0 =g, withR =(0' 1 0) and g = 1 givesthe
Wald test on general formasW = (R0 - )’ (RVR’)* (R0 - q), which for the specific
hypothesis reduces to Wald = (p-1)?/V , with V  being the diagonal element of V
corresponding to p.

3. DISTRIBUTION OF THE WALD TEST UNDER SPATIAL
NONSTATIONARITY

In this section, the finite-sample distribution of the suggested Wald test will be
investigated using Monte Carlo simulation studies. TheMonte Carlo designisasfollows:
For specific sample size n and matrix W: Perform 1.000 iterations:

Generate u as an N(0,1) series and x as U(0,1).

Leee=ptuandy=i+x+e.

Calculate the Wald test for the hypothesisp = 1.
Report 1, 5 and 10 percentiles for the Wald test.

To investigate the impact of contiguity matrix type, we make use of the regular
bishop, rook and queen type contiguity matrices based on an rHr board (so that n=r?)
with r assumed to take the values 5, 10, 15 and 20, and theirregular n=275 matrix of
the Danish municipalities. The bishop matrix represents a square tesselation with a
connectivity of four for the inner fields on the chessboard and one and two for the
corner and border fields, respectively. The queen matrix represents an octogonal
tesselation with a connectivity of eight for the inner fields and three and five for the
corner and border fields. Thus, these tessel ations represent extremes for a number of
patterns, including the hexagonal tesselation, whichisof importance duetoitsapplication
for empirical maps in vector and raster based GIS (Boots and Tiefelsdorf, 2000;
Tiefelsdorf, 2000). Actually, the hexagonal tesselation can be constructed from the
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gueen tessel ation by deleting connectionsfrom any field to thefieldsvertically above
and below this. Moreover, most empirically observed observed regional structuresin
spatial econometrics are made up of regions with a connectivity within the range of
the rook and queen tesselations.

TABLE 1. EMPIRICAL DISTRIBUTION OF THEWALD TEST FOR SPATIAL NONSTATIONARITY

Matrix: Bishop Rook Queen Empirical (1)
n: 25 100 225 400 25 100 225 400 25 100 225 400 275
Percentiles:

1% 11.98 8.74 9.86 7.24 7.17 6.54 7.75 7.43 6.84 5.99 6.63
5% 7.697.357.82 4.83 491 5.05 5.11 5.30 5.17 4.82 3.84
10 % 6.64 6.68 7.10 4.09 4.27 4.30 441 443 464 417 271

Theresultsarereportedin Table 1. It isseen that the critical limits of theWald test
under spatial nonstationarity are higher than for the %(1) distribution. Especially, this
holdstruefor the bishop type matrix. For therook and queen type matrices, the deviations
are approximately equal and found to be most pronounced for the 5 and 10 percentile,
thusindicating that the Wald test under nonstationarity hasadistribution with athicker
right tail than the x(1) distribution.

4. AN EMPIRICAL ILLUSTRATION

To illustrate the above concepts, we provide an empirical example which were
investigated in more detailsin Lauridsen and Nahrstedt (1999) and L auridsen (2004).
The model is concerned with determination of aregression model for outcommuting
ratios asafunction of unemployment, participation rate, density of working placesand
average household size. The data were from a 1994 census for 275 Danish
municipalities. The municipality structureis characterised by an average connectivity
of 4.59 and a range from 1 to 8, which is within the ranges of the rook and queen
matrices used in the Monte Carlo studies above. Thisexampleisespecially interesting
because Lauridsen (2004) estimated a SARX model with a spatial autoregression
parameter as high as 0.99 using 1V estimation. Other regional studies, e.g. Rey and
Montouri (1999) and Kosfeld et al. (2002) report an autoregressive parameter of
moderate size. However, the example of a near unit root shows that the case of
gpatial nonstationarity hasto betaken into account in applied econometrics. For atime
seriesmodel, an autocorrelation parameter of this magnitude would be considered as
a safe indication of nonstationarity. It is thus a tempting question whether an alike
indication of spatial nonstationarity may be derived for thismodel. Table 2 presentsa
brief description of the data.
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TABLE 2. VARIABLESUSED FOREMPIRICAL STUDY

Variable Definition Mean SD. Min Max

OUTCOM  Number of persons with residence in the municipality 58.14 37.79 6.00 237.00
and workplace in another municipality in percentage
of the number of workplaces in the municipality®

PSH1766 Population share of 17-66 year-olds (%)? 65.22 2.85 57.90 74.20
WORKPL  Number of workplaces per 100 inhabitants* 43.11 11.63 21.00 100.00
IPHOUS Number of inhabitants per household? 2.39 0.16 1.74 277
UNEMP Number of unemployed per 100 17-66 year-olds* 9.37 2.24 5.00 18.70
Proximity matrix:
w1 Neighbourhood matrix for N=275 Danish municipalities®
Description of number of links per municipality: 4.59 1.68 1 8
Density of W, =.017
w Row standardization of W,

Datacollected 1994, for N=275 Danish municipalities.
Source:  a: Statistics Denmark, Copenhagen.
b : Own construction.

Table 3 presentsthe ML estimation of themodel. In Lauridsen (2004) it was|eft as
an open question whether the unexpected negative sign for the UNEMP coefficient
was caused by spuriosity dueto spatial nonstationarity, seea sol auridsen and Nahrstedt
(1999). TheWa dtestsfor spatial nongtati onarity, providedin Table 3, point to stationarity
of theresidualsaswell as of the single variables. An alike conclusion was derived by
Lauridsen and Kosfeld (2004) based on OL Sestimation and LM tests. It isthus safely
concluded that the single variables as well as the entire regression are stationary.
Thus, the negative sign for unemployment israther dueto structural propertiesthanto
spatial nonstationarity.
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TABLE3.ESTIMATIONOFCOMMUTINGMODEL

Dependent variable: OUTCOM.

Variable Parameter Standard Error T value Probability
Intercept -245.17 3H.72 -6.86 <.001
UNEMP -358 0.58 -6.15 <.001
PSH1766 472 043 10.98 <.001
WORKPL -2.23 0.09 -2559 <.001
IPHOUS 52.68 7.79 6.76 <.001
0, 0.63 0.05 1151 <.001

Tests for nonstationarity:

Variable Wald Prob(I14(1)) Prob(Empirical)
OUTCOM 4183 <001 <001
UNEMP 16.17 <001 <001
PSH1766 1008 <001 <001
WORKPL 3461 <001 <001
IPHOUS 8.26 <001 <001
residual 47.26 <0.01 <0.01

5. CONCLUSIONS

Until recently, it has not been well established how to separate the case of spatial
nonstationarity from the case of stationary positive autocorrel ation. Asaconseguence,
reliable diagnostics for spurious spatial regression and for the existence of spatial
cointegrating relations have not been available. The present study contributesto close
these gaps by proposing aWald test for detecting spatial nonstationarity. By means of
Monte Carlo simulations the finite sample distribution of the suggested Wald test is
provided for afairly general set of contiguity matrix typesunder varying finite sasmple
sizes. Itisfound that thecritical valuesfor theWald test for nonstationarity are generaly
higher than the 2 critical values.
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