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1. INTRODUCTION AND MOTIVATION

The attractive features of mixed distributions are widely used for modelling
heterogeneous portfolio claim counts in an actuarial application: this fact led us to
develop robust Bayesian inferences for the location parameter (the premium to be
charged, in credibility theory) of the sample distribution.

Credibility theory is a set of ideas concerning the systematic adjustment of insurance
premiums as claims experience is obtained. One goal of credibility theory is to estimate

the conditional mean [ ]θXE , known as the net premium principle. The loss

distribution of a given risk is, therefore, characterized by its conditional mean, but
that mean is generally unknown. Therefore, we assume that the value θ is fixed for a
given risk, although it is generally unknown. The probability density function of Φ is
given by π(θ); this is the prior distribution in Bayesian analysis, also called the structure
function, the distribution that represents one’s uncertainty about the parameter Φ
before observing claim data for a given risk. Let Φ be a random variable, and

t,...,,i,X i 21==θΘ , the claims or loss amount in subsequent years. We assume that

given θ the iX ‘s are conditionally independent and identically distributed random

variables.

     In this paper we study the situation where the collective has two types of
risks;α1% are good risks (usually this is a high percent of the population in study)
with a low claim or loss amount probability, and the other α2% are bad risks (a low
percent of the population, in practice) with a high claim or loss amount probability
(see Hewitt, 1966; Hewitt and Lefkowitz, 1979 and Venter, 1991, among others),
which can be modelled by two structure functions (prior distributions) π1(θ) and

π2(θ). Therefore our prior distribution of θ is given by ( ) ( )∑ =
=

2

10 i ii θπαθπ , with

0 ≥21 αα , , 121 =+αα .

A premium calculation principle assigns to any risk X (with probability function
f(xθ), where x takes values in the sample space X and θ is considered a realization of
a parameter space Φ) a real number, which is the premium.

In the case of the net premium principle, the premium (Heilmann, 1989; Landsman
and Makov, 1998; Young, 2000) is given by

( ) [ ] ( ) .,dxθxxfXE Θθθθ ∈== ∫XXP (1)

In ratemaking, the actuary takes a claim experience m=M  from the random va-

riables tX,...,X,X 21  and uses this information to estimate the unknown fair premium
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( )θP . Now, let  denote the prior density function of θ, which is given by a convex

sum of two prior distributions; the good and bad risk distributions.
The posterior distribution of θ given the experience m is given by

( ) ( ) ( )
( ) ( )

( ),m
dmf

mf
m

i
i

'
i∑

∫ =

==
2

10

0
0 θπα

θθπθ

θπθ
θπ

Θ
(2)

where

( )
( )∑

=

=
2

1i
ii

ii'
i

mp

mp

πα

πα
α

and ( ) ( ) ( )∫= Θ
θθπθπ dmfmp ii  is the marginal distribution of  M with respect to the

prior πi.
Using the net premium principle, the Bayesian net premium (Heilmann, 1989;

Eichenauer et al., 1988) is now given by

( ) ( ) ( ) ( ).mdmθπθm
i

*'
i

*
i∑∫

=

==
2

1
0PP

0 πΘπ αθ P

Our approach is based on the assumption that the practitioner is unwilling or unable
to choose a functional form of the structure function, π0 but that he may be able to
restrict the possible prior to a class that is suitable for quantifying the actuary’s

uncertainty. Therefore it is of interest to study how the premium, ( )m*
πP , for priors in

such a class behaves.
We use the classical ε-contamination class of priors (Berger, 1985,1994;

Sivanganesan, 1991; Sivaganesan and Berger, 1989; Boratynska, 1996; Ying-Hsing
and Ming-Chung, 1997, and Ríos and Ruggeri, 2000; among others),

( ){ }Q∈+−== q,qεπεπΓε 01 , where π0 is the base elicited prior, Q is the class of

allowed contaminations and [ ]10,∈ε  measures the uncertainty of the base prior π0.

Since in our model there are two distinct claim or loss amount generating processes,

where some claims or losses are regular and may be described by a p.d.f. ( )θπ1 ,

while others are nuisance high claims or losses which may be described by a p.d.f.

( )θπ 2 , our -contamination class is given by

( ) .,,,,j,q,q j
ii

i
ii

i
i

j 1211 2121

2

1

2

1

=+≥=








∈+−== ∑∑
==

βββββεπαεπΓε 0Q
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For { }onsdistributiy probabilit All1 =Q  we determine the range of Bayesian net

premiums as π varies over j
εΓ . Now, if we want the model to include distributions

with similar shapes to the prior distributions, we can consider the contamination
class

( )
.

,

q:q

ii

ii









=
πθ

θ
 of that as mode,

same with theunimodal be to2Q

2. LOWER AND UPPER BOUNDS IN A ROBUST BAYESIAN ANALYSIS
WITH MIXTURE PRIORS

In this paper the range of Bayesian net premiums is found over the class

( ) ( ).,j,q,q j
ii

i
ii

i
i

j 211
2

1

2

1

=








∈+−== ∑∑
==

QβεπαεπΓε

with

{ }onsdistributiy probabilit All1 =Q ,

and

 
( )

,
,

sq:q

ii

ii









=
πθ

θ
 of that as mode,

same  with theunimodal i2Q

where θi is the modal value for the distribution of expected value of claims (or loss
amount), πi(θ).

Using 1
εΓ , if similar conclusions are obtained, no additional information is required;

however, if conclusions differ markedly, we must obtain more information. In this
case we could acquire partial information about the prior (for example, the bimodality)
and consider all prior distributions that are compatible with this information, using

2
εΓ .

It is straightforward to rewrite the Bayesian premium under 1
εΓ  class as

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

dqmfmp

dqmfgmmp

m

i
ii

i
ii

*

∫∑

∫∑

+


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
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−
=
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1
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1
0

P
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(3)
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and

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

zdFzHmp

zdFzHmmp
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(4)

under 2
εΓ  class. Now, we can easily obtain the ranges for Bayesian premiums using

the following theorem (Sivaganesan and Berger, 1989; Berger and Moreno, 1994).

Theorem 1 Suppose B > 0 and ( ) ( ) 21,i,xg,xf iiii =  are continuous functions with

( ) ,xg ii 0≥  then

( ) ( )

( ) ( )

( )

( )∑

∑

∑∫

∑∫

=

=

=

=

+

+
=

+

+

2

1

2

1
2

1

2

1

2121

i
ii

i
ii

x,x

i
iiii

i
iiii

dF,dF
xgB

xfA

sup

xdFxgB

xdFxfA

sup

The same result holds with sup replaced by inf.

2.1. Two standard models

The most  useful probability models developed in the literature representing the
distribution of the number of claims in an insurance portfolio (Lemaire, 1995) are the
following. The pair likelihood and structure function chosen is termed “model”. The
most frequently used likelihoods are Poisson (Wilmot, 1993) and Negative binomial
(Lemaire, 1995). These likelihood functions are combined with structure functions
like as Gamma and Inverse Gaussian, among others (Lemaire, 1992). In this paper,
we present the two most useful and standard (conjugate) parametric models.

Assume that the number of claims generated annually depends upon chance, while
the amount of the individual claim is taken as fixed. Suppose that the number of
claims follows a Poisson distribution with parameter θ > 0,

,...,n,
!n

e
}nN{P

n

10===
−θθ

,
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and the prior density of θ is a mixture: ( ) ( ) ( )0 1 1 1 2 2 2a , a , ,b bπ θ α α= +G G

where 1 2 1 2, , ,a a b b  are positive hyperparameters, and G  represents the gamma density

function, i. e.:

.0,)( 1 >∝ −− θθθπ θba e

We call Poisson-Gamma model to this specification. Observe that modelization
assumes that the risks are independent, so we take a risk parameter θ and assume that
the number of claims for each policy-holder fit a Poisson, whose parameter θ varies
from one individual to another, reflecting the individual’s claim propensity.  Examples
of papers using the simple Poisson-Gamma include Eichenauer et al., 1988; Gómez
et al., 1999 and Gómez et al., 2000, among others.

Another common model in credibility literature, consists of assuming an
exponential distribution for the likelihood function (Heilmann, 1989), that is

),(x,e)x(f x 00 >>= − θθ θ  and also of considering a mixture of two gammas in the

structure function (prior density).
Following results give us the methodology to compute upper and lower bounds

for the premiums. These results are very important because the computing problem
becomes in terms of a variable.

Proposition 1 In the indifference setting, i.e. 1 ,επ ∈Γ  the lower (upper) bound for

the Bayesian net premium is given by

( ) ( ) ( )
( ) ,

m
supinf

*

θ
θπ

Θθ 31

21 0

RR

RPR

+
+

∈

where:

(i) in the Poisson-Gamma case,

( ) ( )
( )
( )

( )
2

1
1 2

1

1 !
1 , ,

1 !

i

i

b
tm tmii

i b tm
i i i

b tma
e

b a t
ε α θ εθ + −

+
=

+ −
= − =

− +
∑R R

( ) ( ) ( ) .
ta

tmb
m

i i

i'
i

* ∑
= +

+==
2

1
23 0

PandRR αθθθ π
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(ii) in the Exponential-Gamma case,

( ) ( )
( )
( )

( )
2

1
1 2

1

1 !
1 , ,

1 !

i

i

b
n tmii

i b t
i i

b ta
e

b a tm
θε α θ εθ − −

+
=

+ −
= − =

− +
∑R R ,

( ) ( ) ( ) .
1

and
2

1

'*
23 0 ∑

= −+
+

==
i i

i
i tb

tma
m αθθθ πPRR

Proof. The proof follows from (3) and Theorem 1 with ( ) ( )2 2 2 2 0.f x g x= =

Proposition 2 In the bimodality setting, i.e. 2 ,επ ∈Γ  the lower (upper) bound for

the Bayesian net premium is given by ( ) ( )
1 2, 0 1 2inf sup , ,z z z z≥ R  being

( )
( ) ( ) ( )

( ) ( )
,0,if,

1

1

, 212
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z
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( ) ( ) ( ) ( )

( ) ( ) ( )
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,z

z

z
*
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=
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,0if,

1
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222221
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1
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>
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=

∫
∫
+

+
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dzm
z

z

z

θ

θ

θ

θπ

θθβθβ

θθβθβ

RRR

RRPR
R

and
( )

( ) ( )

( ) ( )
,0,0

2

1
33

2

1
2

*
1 0

∑

∑

=

=

+

+
=

i
ii

i
iim

θβθ

θβπ

RR

RPR
R

where ( ) ( )θθ 321 , RR,R  and ( )m*
0πP  are as in Proposition 1.

Proof. The proof follows from (4) and Theorem 1.
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2.2. Other models

Previous results are only for those models and for the net premium principle.
Obviously, there are other models and principles in the actuarial literature. For example,
the variance principle is often used.

Using the variante Premium principle, a bonus malus system is defined by the
relativities:

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ].PE

PE

PE

PE
)m(P

m

m*
BM 2

2

100
θ

θ

θ

θ

θπ

θπ

θπ

θπ
=

So, robustness problem of the premiums is essential to choose the class of
distributions (Eichenauer et al., 1988). In this sense, two preceeding classes are “more
artifficial” and are used to solve computing problems instead of natural causes. We
present now results for classes of prior moments conditions. In other contexts, this
class has been studied by Eichenauer et. al (1988).

( ) ( ) ( ) ( ){ }2111:q 0 ,i,ddq i
ii ==+=+= ∫∫ αθθπθθθθ

ΘΘ

*
1Q

Corollary 1: For *
1Qq∈ , the upper bound for the Bayesian premium for the

variance principle in the Poisson-Gamma model is given by

( )
( )

( ) ( )
( ) ( ) ,

RR

RR

babaa

bab
)m(P*

BM θθ
θθ

Θθ 31

21
221

100
+
+

+++
+=

∈
upsups

q

where

( ) ( )( ) ( ) ( )( )
( ) ( )

22

1 32

1 2
,

1 2

a tm a tm b t a tm b tb
R R

b t a a b ab
θ θ

+ + + + + + + + =  + + + + 

( ) ( ) ( ),RR θθθ 42 1+=

( ) ( ) ( ) ( ) ( )( )( ) ,eabbaatmatbbR tmta −+++++++−= θθθΓεθ θ23211 222
3

( ) ( )( ) ( )( )( )2 2

4 2 1 .
a tm

R a b t a b aθ ε θ+ += Γ + + + +

     The lower bound is obtained by replacing sup with inf.

Proof. The result follows from the expressions

 ( ) ( ) ( )( )( )2
0

a tm
p m b a tm a b tπ += Γ + Γ + ,
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[ ] ( ) ( ) ( )( )
0 0

2 2 2
1 21 , 1 1 2E a b b E a a b ab bπ πα θ α θ = + = + = + = + + + 

and considering the Lemmas 3.2.1. and A.1 in Sivaganesan and Berger (1989).

Finally, the result below gives us the relativity range when we use the class

( ) ( ) ( ) ( )
( ) ( )

i i 0

0 0

q: H H , 1,..., ,

and mode of mode of

iq d d i n

q m m

θ θ θ θ π θ θ α

θ π θ λ
Θ Θ

 = = = =  
= =  

∫ ∫*
2Q

Corollary 2: For ∈ *
2q Q  the upper bound for the Bayesian premium for the

variance principle in the Poisson—Gamma model is given by

( )
( )

( ) ( )( )
( ) ( )( )

( )
( )

( ) ( )
( ) ( )

0

0

0

0

1 2

2
0

* 3 4

1 0 2 0
2

3 0 4 0

100
1 2

( )

100 , 0.
1 2

z

z
z

BM

R R db a b

a a ab b R R dP m

b a b R R
z

a a ab b R R

θ

θ
θ

θ

θ θ θ

θ θ θ

θ θ
θ θ

+

+
>

 ++
 + + + += 
 + + =

+ + + +

∫
∫

q

sup

sup

with ( ) ( ) ( )1 2 3, ,R R Rθ θ θ  and ( )4R θ  as in Corollary 1.

The lower bound is obtained by replacing sup with inf.

Proof. The proof is a consequence of applying Lemmas 3.2.1. and A.1 in
Sivaganesan and Berger (1989).

3. NUMERICAL ILLUSTRATIONS

In order to illustrate the above ideas, two numerical illustrations are given. We

shall use .,i,ii 21==αβ  We have also included a measure the magnitudes of which

do not depend on the premium measurement units, namely the relative sensitivity RS
(see Sivaganesan, 1991; Gómez et al., 1999 and Gómez et al., 2000) which is given
by

( ) ( ) ( ) ( ).2,1%,100infsup
2

1
RS **

* 00

0

=×







−=

Γ∈Γ∈
jmm

m jj

j
π

π
π

ππ εε

PP
P
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Results for the variance principle analyzed in previous section are initial and we
have studied the case for the net premium principle.

Example 1. Let θX  have a Poisson distribution with parameter θ. Assume that

the actuary knows that two modal values are possible and they are around 1.5 and 10

(i.e. 511 .=θ  and 102 =θ ), and that claims larger than 5 are less frequent than smaller

claims. Thus, a plausible mixture prior density is,

( ) ( ) ( )30,32.04,28.00 GG ⋅+⋅=θπ .

     Table 1. Contains the standard Bayesian premium for three observed sample
realizations. This particular situation corresponds to , i.e. no errors in the

elicitation process

Table 1. Poisson-Gamma model

m ( )m*
1πP ( )m*

2πP
'
1α

'
2α ( ) ( )∑ == 2

1
*'*

i i mm
iππ α PP

4 3.666 5.384 0.998 0.002 3.670
7 6.166 7.692 0.07 0.93 7.585
12 10.333 11.538 0.001 0.999 11.538

The infima and the suprema of the Bayesian net premium can be calculated as
described in the previous section. The bounds of the Bayesian premium are given in

Figure 1 for the classes 1
εΓ  and 2

εΓ . Figure 2 shows the RS factor. Furthermore, if

022 == βα we are in the simple unimodality setting, as in Gómez et al. (1999), Gómez

et al. (2000) and Sivaganesan and Berger (1989).

Example 2. Let θX  have an exponential distribution with parameter θ and

( ) ( ) ( )6,104.011,606.00 GG ⋅+⋅=θπ . Table 2 presents the standard Bayesian
premium in three sample situations.

Table 2. Exponential-Gamma model

m ( )m*
1πP ( )m*

2πP
'
1α

'
2α ( ) ( )∑ == 2

1
*'*

i i mm
iππ α PP

2 2 4 0.864 0.136 2.270
4 3.333 5 0.164 0.836 4.727
5 4 5.5 0.073 0.927 5.391
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Figure 1: Poisson-Gamma model. Ranges of Bayesian premiums (m=4 and m=7,
above, left and right, respectively; below, left, m=12)

Figure 2: Poisson-Gamma model. RS factor (m=4 and m=7, above, left and right,
respectively; below, left, m=12)
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Figures 3 and 4 show the bounds of the Bayesian premium and the RS factor,
respectively.

Figure 3: Exponential-Gamma model. Ranges of Bayesian premium (m=2 and m=4,
above, left and right, respectively; below, left, m=5)

In both examples, the most robust situation occurs when the difference between
the Bayesian net premiums for both good and bad risks are higher (m=12 in the
Poisson case and m=5 in the exponential case). On the other hand, the less robust
situation is in the case m=4 and m=2 for the two examples considered, when there is
a higher difference between the Bayesian net premiums for both good and bad risks.
Reading the figures in cases of Bayesian robustness is similar to reading a standard
bonus-malus table, but taking into account that instead of a single premium, we obtain
a range of premiums over the different classes considered.  For instance, when
uncertainty is low (of the order of 10%, epsilon=0.1) we find that in the case of
Poisson-Gamma model we have a variation range of (3, 4.5). Obviously, this interval
contains the value …., in table 1, which was obtained under standard Bayesian analysis.
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Figure 4: Exponential-Gamma model. RS factor (m=2 and m=4, above, left and right,
respectively; below, left, m=5)

4. DISCUSSION AND CONCLUSIONS

A basic assumption of credibility theory is that the values of the parameters of the
probability distribution of loss are unknown. In this case, the company charges the
Bayesian premium, which requires the decision maker, the actuary, to define a
probability distribution for the values of the unknown parameters of this loss process,
the prior distribution. Nevertheless, there are clearly many prior distributions other
than  which are equally compatible, and hence which could be used instead of π0.
This is justified in our model, where the prior π0 is given by the convex sum of two
prior distributions π1 and π2. This leads to the question of Bayesian robustness, which
is treated in this paper using the ε-contamination class. Bimodality effects are very
important in modelling subjective beliefs about risk parameters when this is necessary.

Standard Bayesian models in actuarial science have used conjugate models
(Poisson-Gamma, Exponential-Gamma). In this paper, we present recent techniques
to analyze the bimodal form of the premiums. If results are robust, the structure function
is accepted. These premiums will be relatively equal if they represent the actuary´s
system beliefs. However, when the model present a lack of robustness or is very
sensible to the structure function, the actuary must be very carefull. Maybe, the actuary
must assume another probabilistic model more flexible.
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In this context, conjugate modelling can be rejected. Other non-conjugate modelling
methods are possible, using recent developments in Markov chain Monte Carlo
(MCMC) methods to facilitate the exploration of a posteriori actuarial magnitudes
(see Makov et al., 1996 and Scollnik, 1995 and 2001, Ntzoufras and Dellaportas,
2002). Thus, log-normal model presented in Nzoufras and Dellaportas (2002)
developed for the log-adjusted claim amounts can be easily implemented using Gibbs
sampling.

Finally, all the theorems and results discussed in this article can be used for other
premium calculation principles (Heilmann, 1989; Gómez et al., 1999 and Gómez et
al., 2000), such as exponential, Esscher and variance, among others.
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